各项常见运动的代谢当量(MET)整理

文章介绍了代谢当量(MET)作为衡量运动强度的单位,如何计算不同活动的能量消耗,并将运动按强度分为低至极高。列举了各种常见活动的MET值和相应的能量消耗估算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代谢当量说明

衡量运动强度的单位是 MET(代谢当量)。

当你在进行强度为 1 MET 的活动时,每分钟每公斤体重大约会消耗 3.5 毫升氧气。

因为人体的能量来自于身体内的氧化反应,而人体的氧化反应必须依赖氧气进行,所以我们可以使用各项活动的 MET 值,来估算各个运动的能量消耗。

能量消耗的估算公式如下:
消耗的能量 ( 千卡 ) = MET × 时间 ( 小时 ) × 体重 ( 千克 ) × 1.05 消耗的能量(千卡) = \texttt{MET} \times 时间(小时) \times 体重(千克) \times 1.05 消耗的能量(千卡)=MET×时间(小时)×体重(千克)×1.05
通常来说,我们将运动分为如下强度:

  • 低强度:MET < 3
  • 中强度:3 < MET < 6
  • 高强度:7 < MET < 9
  • 极高强度:MET > 10

各项活动的代谢当量

MET 值走路跑步骑自行车 / 健身车其他常见项目
1.0静卧
1.3坐姿(轻松地,例如休息)
1.5坐姿(一般地,例如吃饭、打牌)
1.8坐姿(忙碌地,例如工作、打电话);站姿(轻松地)
2.03.2 公里 / 小时站姿(一般地,例如洗漱)
2.3站姿(忙碌地,做家务、打扫房间)
2.5植物浇水;骑电动车;瑜伽;驾车(汽车或小型货车)
3.04.0 公里 / 小时50W 功率下楼梯;打保龄球;低强度力量训练(俯卧撑、仰卧起坐)
3.54.8 公里 / 小时清洗地毯;墩地;搬运小件行李;爬台阶;打太极拳
4.05.6 公里 / 小时16 公里 / 小时擦地板;推轮椅;打乒乓球;爬楼梯(缓慢地);中强度力量训练(俯卧撑、仰卧起坐、引体向上、弓箭步);踩水
4.5耕作;打羽毛球;芭蕾舞;踢踏舞
4.8仰泳(休闲)
5.06.4 公里 / 小时打垒球;打棒球;打高尔夫;有氧舞蹈(低冲击);椭圆机(中强度)
5.3蛙泳(休闲)
5.5100W 功率
6.07.2 公里 / 小时移动家具;高强度力量训练;爵士舞;打篮球(中强度);阻力训练;划船机(高强度)
6.5竞走
7.0150W 功率羽毛球(比赛);有氧舞蹈(较强冲击);踢足球;打网球;滑雪(一般);滑冰(一般)
8.08.0 公里 / 小时21 公里 / 小时搬运重物;爬楼梯(快速地);登山;游泳(自由泳中速);篮球(比赛);高强度力量训练(俯卧撑、仰卧起坐、引体向上、开合跳)
8.8跳绳(< 100 / 分钟)
9.08.9 公里 / 小时24 公里 / 小时搬运重物上楼梯
9.5仰泳(高速)
10.09.7 公里 / 小时柔道;泰拳;橄榄球;足球(比赛)
10.3蛙泳(高速)
10.5200W 功率
11.010.8 公里 / 小时蝶泳(高速);自由泳(高速)
11.511.3 公里 / 小时
11.8跳绳(100 - 120 / 分钟)
12.028 公里 / 小时
12.3跳绳(120 - 160 / 分钟)
12.512.1 公里 / 小时250W 功率
13.512.9 公里 / 小时滑冰(比赛)
14.013.7 公里 / 小时花样滑冰
15.014.5 公里 / 小时跑步上楼梯
16.016.1 公里 / 小时32.2 公里 / 小时
18.017.5 公里 / 小时
内容概要:本文详细介绍了在COMSOL中使用不同参数估计方法(如最小二乘法、遗传算法和贝叶斯推断)来跟踪输出浓度并与实验值进行误差比较的过程。首先,文章简述了扩散方程及其在COMSOL中的应用背景。接着,分别阐述了最小二乘法、遗传算法和贝叶斯推断的具体实现步骤,包括目标函数的定义、参数设置以及优化求解器的选择。随后,讨论了如何通过后处理功能提取计算得到的浓度数据,并将其与实验值进行比较,以评估各方法的准确性。最后,强调了选择合适的方法对于提高模型精度的重要性,并分享了一些实践经验,如避免自动网格细化、使用动态权重调整等技巧。 适合人群:从事工程仿真、化学工程、材料科学等领域研究的技术人员,特别是那些需要利用COMSOL进行参数估计和模型验证的研究者。 使用场景及目标:① 使用COMSOL进行复杂物理现象(如扩散、反应等)的数值模拟;② 对比不同参数估计方法的性能,选择最适合特定应用场景的方法;③ 提高模型预测精度,确保仿真结果与实验数据的一致性。 其他说明:文中提供了大量实用的代码片段和技术细节,帮助读者更好地理解和应用这些方法。同时,作者还分享了许多实际操作中的经验和教训,提醒读者注意常见陷阱,如局部最优、参数相关性和数据预处理等问题。
"NHANES"(National Health and Nutrition Examination Survey,美国国家健康和营养调查)是一个长期的、大规模的健康研究项目,其中包含了许多关于个体健康状况的数据,包括体力活动和代谢当量(METs)的信息。在R语言中分析NHANES数据库中关于体力活动代谢当量的数据,通常涉及以下几个步骤: 1. **数据加载**:首先需要从NHANES的官方网站下载数据集,并使用`survey`或`NHANES`包来读取和处理多重权重数据。 ```R library(survey) data <- read.svymean("nhanes_data.csv", survey="weight") ``` 2. **数据清洗**:检查数据是否有缺失值,对METs变量进行预处理,如果有必要,可以填充或删除缺失值。 3. **描述性统计**:计算METs的平均值、标准差等基本统计指标,了解样本分布情况。 ```R summary(data$met_value) ``` 4. **关联分析**:通过`cor()`或`lm()`函数分析METs与其他变量(如年龄、性别、体重等)的关系,探究可能的影响因素。 5. **绘图展示**:使用`ggplot2`创建散点图或箱线图,可视化 METs 和其他变量之间的关系。 6. **多态应用**:如果数据库中有多态信息(如不同类型的体力活动对应的METs),可能会涉及到条件分组或因子分析来处理。 注意:实际操作中,你需要根据NHANES提供的官方文档和数据文件结构来调整上述代码。另外,访问和使用NHANES数据可能存在限制,需遵守其使用协议。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值