透视形变(perspective distortion)

本文介绍了透视变形的概念,包括其特点及两种形式:扩展变形与压缩变形,并通过实例解释了距离如何影响变形的程度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考:
https://baike.baidu.com/item/%E9%80%8F%E8%A7%86%E7%95%B8%E5%8F%98/228760
https://zh.wikipedia.org/wiki/%E9%80%8F%E8%A7%86%E5%8F%98%E5%BD%A2#/media/File:Camera_focal_length_distance.gif
透视变形指的是一个物体及其周围区域与标准镜头中看到的相比完全不同,由于远近特征的相对比例变化,发生了弯曲或变形。
我们贴上维基的一幅动图直观感受下随着镜头逐渐拉远,物体的形变程序的变化。
这里写图片描述
你会看到的是,镜头逐渐拉远的时候,物体形变的程度越来越轻。
正如我们所能知道的,在同一幅图像中,远处的物体比相同大小的近处物体显得小。由于这一原因,平行的铁轨会随着我们向远处瞭望而显得越来越靠近,直至汇聚成一点。
透视还有另外一种表现,即物体越近,透视效果越强烈。这也和上面动图表达的思想是一样的,刚开始镜头很近时,正方体的一个角会在图像上显示为一个锐角。
具体地,如果有200名士兵排成一纵队正在行进。如果在距离前面士兵10英尺的地方观看或拍摄队伍(即近距离拍摄),那么前面的士兵就会显得比最后的士兵高大得多(景深形变的程度是不一样的,景深越深,这种变化的对比就比较强烈)。但是,如果在远离前面士兵100米的地方观看或拍摄同一支队伍,第一个和最后一个士兵之间的大小差异就不会显得那么大(这种变化的对比就比较小)。
这里写图片描述
也就是说,随着被摄体的越来越远,透视变形会变得越来越小;但却开始变得扁平。相距很远的两个被摄体却显得像一个在另一个之上似的。

透视形变的特点

通过上面的描述,我们应该能大致看出透视形变的特点。
1.被摄体越远,显得越小;
2.镜头离被摄体越远,被摄体外观上的大小变化越小。即镜头离被摄体越远,那么被摄体的形变就越小。

透视形变的形式

透视变形有两种形式:扩展变形(extension distortion)和压缩变形(compression distortion)。
扩展变形(广角失真)可以看作是用广角镜头(视角比标准镜头广)近拍得到的图像。离镜头近的物体与远处物体相比显得比正常尺寸大,而远处物体显得比正常尺寸小而且远——所以距离被扩展了。
压缩变形(长焦失真)可以看作是用长焦镜头(视角比标准镜头窄)在远处拍摄到的图像。物体无论远近看起来大小大致相同——较近的物体显得比正常尺寸小,而较远的物体显得比正常尺寸大,这样便无法区分远近物体的距离——所以距离被压缩了。
虽然上面的阐述引入了2个不同的镜头,好像透视形变的2种形式和特定的镜头有关。但实际上,要注意透视变形是由距离引起的,而非镜头——在同一距离,拍摄同一场景,无论用什么镜头,拍到的透视变形都是完全相同的

### 失真的定义及其在音频处理和图像处理技术中的应用 #### 音频处理中的失真 (Distortion in Audio Processing) 失真是指信号经过某种变换后,其原始特性发生了不可逆的变化。在音频处理领域,这种变化通常表现为波形形状的改变或频率成分的增加[^3]。Nika Aldrich在其著作《Digital Audio Explained》中提到,失真可以由多种因素引起,例如量化误差、采样率不足以及非线性放大器的作用。特别是在数字音频处理中,抖动(Dithering)是一种用于减少量化噪声的技术,但它也可能引入轻微的失真效果。 一种常见的音频失真形式是非线性失真,它发生在输入信号通过具有非线性响应特性的设备时。这可能导致谐波失真和谐波分量的产生,从而影响声音的质量。 ```python import numpy as np from scipy.signal import square # 生成正弦波并加入非线性失真 t = np.linspace(0, 1, 44100, endpoint=False) original_signal = np.sin(2 * np.pi * 440 * t) # 原始正弦波 distorted_signal = original_signal ** 3 # 加入三次方非线性失真 ``` #### 图像处理中的失真 (Distortion in Image Processing) 在图像处理中,失真同样是一个重要的概念,涉及像素值分布的变化或者几何结构的变形。Anisotropic Diffusion 和 Wavelet 变换是两种常用于减少图像失真同时保留边缘细节的方法[^1]。这些方法能够有效降低噪声的影响而不显著损害图像质量。 另一方面,部分微分方程(Partial Differential Equations)也被广泛应用于图像恢复(Image Restoration),其中涉及到去除因镜头畸变或其他物理过程引起的几何失真。此外,在某些情况下,人为制造特定类型的失真可用于艺术创作或是数据增强的目的。 #### 结合机器学习的失真建模 随着深度学习的发展,神经网络(Neural Networks)逐渐成为解决复杂失真问题的有效工具之一。例如,《Speech Drives Templates: Co-Speech Gesture Synthesis with Learned Templates》一文中探讨了如何利用预训练模型来合成自然语音驱动的手势动画,这一过程中不可避免地会遇到声学特征到视觉表现映射所带来的潜在失配即所谓的跨模态失真问题[^2]。因此,设计鲁棒性强的学习框架对于克服此类挑战至关重要。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值