【技术沙龙总结】福州朴朴01期 - 演进史


前言

一直都很期待福州有一些技术氛围,前几天看到便报了名,早上醒来看到下着大雨,竟然想了一会要不要去!地点福州上下杭鹿森书店,雨后的上下杭搭着小桥流水,有点乌镇的影子。

在这里插入图片描述


下面以学习的姿态凭借记忆回顾一下技术沙龙的内容。

整体演进史

对于一家2016年成立的公司,没有那么多的历史技术包袱算是特别幸运了,因为历史债务的堆积,会直接影响到业务的开发效率。
单体:对于产品需要快速抢占市场,方法欠妥,但是当下唯一正确;人力简单。
服务化:随着业务的复杂性扩大,业务拆分不可少;人力团队功能性划分。
微服务:业务与应用间复杂性继续扩大,微服务来了,同时技术复杂性越高;开始组织结构业务性调整。
网格:当下理解是降低微服务的复杂性,让微服务注重业务开发,使系统复杂性可控。


那么为何不一开始就使用网格呢?就像奴隶社会无法跳过封建社会直接进入社会主义社会。

在这里插入图片描述

单维度演进史

1、后端
谈到了AKF拆解,书籍《架构即未来》 -> 对于服务的扩展可以采用AKF扩展立方体,XYZ三个维度。
对于单体则是X维度扩展,服务/数据的复制(加机器)。微服务则是X+Y维度扩展,职责/功能拆分(异步化,多数据源)。网格则是X+Y+Z维度扩展,服务/数据的分区(分库分表,集群)


2、前端
灵活性升级,单体的前后端分离摆脱后端束缚。使用React,less+typescript,webpack摆脱重复逻辑获得灵活性进入前端微服务。后续再升级摆脱其他前端依赖进入网格。


3、运维
单体:人工部署,nginx,外部监控
服务化:自动化部署,kong,grafana(业务非通用,产生自研需求)
微服务:k8s,自动化测试与部署,全方位监控,Prometheus,自定义监控(系统复杂化,存在各种自定义监控)
网格:自动化压测,app前端发布集成,流量回放,预警与流量监控,灰度环境(事前保障)


期间单对这一块进行了技术深入扩展:
在分布式系统中,排查问题的复杂度就特别高,因此谈到了全链路追踪技术,这一块特别好用,可以追踪到一个请求从开始到结束所经过的链路,对于微服务来说,可以快速近乎精准定位哪个地方出现了问题(目前左耳用到的是pinpoint)
image.png
当然还有以下好用的工具:
日志:多台服务日志排查就很麻烦了,因此需要集中的elk日志进行统一查询
监控:可以自定义条件触发告警等,经常可以通过监控来发现一些隐藏问题与性能瓶颈
部署:这一块感触颇深,从开始的手动sftp部署,到shell脚本半自动部署,再到k8s自动部署。


4、组织结构
理论上纵向划分为:后端,前端,客户端,测试四个组。但是存在问题是四个组互相的不了解,这时纵向可引入产品组,当业务复杂性继续扩张时,可以横向在引入商品组,订单组。
image.png
组织架构对应有个康威定律,意思是组织架构会影响到产品,因此组织架构要按技术架构来组建。

总结

在整个过程中,扮演者学习者的角色,并蹭点吃的哈哈哈,干货满满,所以有比较强的欲望把它记录下来,也期待下一次的沙龙。
image.png

Stable Diffusion是一款基于深度学习的文本到像模型,能够根据输入的文字提示生成相应的图片。为了帮助您了解如何使用Stable Diffusion批量生成图片的过程,下面将为您详细介绍。 ### 环境准备 首先你需要准备好适合运行Stable Diffusion的工作环境: 1. **硬件设备**:建议配备一块NVIDIA GPU,显存越大越好;如果没有GPU也可以只依靠CPU工作,不过效率会非常低。 2. **安装Python环境**:通常选择Anaconda来管理虚拟环境可以简化依赖包之间的冲突问题。 3. **获取Stable Diffusion WebUI项目源码**: - 可以从GitHub上克隆官方仓库`https://github.com/AUTOMATIC1111/stable-diffusion-webui.git` 4. 安装必要的依赖库并启动Web UI界面: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui conda env create -f environment.yaml # 或者使用 pip install 脚本里的命令去创建pip环境 ``` 5. 根据系统情况调整配置文件中的设置(例如CUDA版本等) ### 批量生成功能实现步骤 接下来就是具体的批处理流程了: 1. 进入StableDiffusion web ui页面后,在左侧找到“Batch Generate”选项卡; 2. 设置好每次迭代的数量、随机种子值范围以及总的迭代次数等等参数; 3. 输入想要转换成画内容描述语句作为Prompt,并设定Negative Prompt避免某些特征出现在最终结果里; 4. 修改其他如风格倾向(Style)、CFG Scale、采样步数(Sampling Steps)等相关超参直至满意为止; 5. 开始点击"Generate"按钮就可以让程序自动为你生成一系列高质量的艺术作品啦! 需要注意的是由于这是一个比较消耗资源的任务,所以在长时间稳定输出之前最好先做一些小规模测试熟悉整个过程并且观察效果是否达到预期标准。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值