矩阵快速幂


原博客地址:https://blog.csdn.net/qq_16554583/article/details/80182429


首先你要会矩阵相乘!!!(不会的话自己百度

矩阵相乘满足结合律(A*B)*C = A*(B*C)

让原矩阵R乘加速矩阵base的n次方 
由此可以与数的快速幂结合 
就是矩阵快速幂。 

矩阵快速幂的关键是构造。 
只要能够构造出原矩阵和基数矩阵,题就解了。 

构造时根据递推公式,一步一步推出加速矩阵。

下面给三道矩阵快速幂的题,也算是裸题了,代码也都可以当模板用

51Nod 1242 斐波那契数列的第N项

NYOJ 148 Fibonacci数列(二)

NYOJ 301 递推求值


51Nod 1242 斐波那契数列的第N项:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1000000009;

struct matrix {
    long long coo[2][2];
} r,base;

matrix mult(matrix A,matrix B) {        //矩阵相乘
    matrix C;
    for(int i=0; i<2; i++) {
        for(int j=0; j<2; j++) {
            C.coo[i][j] = 0;
            for(int k=0; k<2; k++) {
                C.coo[i][j] += (A.coo[i][k]*B.coo[k][j]) % MOD;
            }
            C.coo[i][j] %= MOD;
        }
    }
    return C;
}

int Pow(long long n) {
    base.coo[0][0] = base.coo[0][1] = base.coo[1][0] = 1;   //加速矩阵
    base.coo[1][1] = 0;
    r.coo[0][0] = r.coo[1][1] = 1;    //单位矩阵
    r.coo[0][1] = r.coo[1][0] = 0;
    while(n) {                  //矩阵快速幂
        if(n & 1)
            r = mult(r,base);
        base = mult(base,base);
        n >>= 1;
    }
    return r.coo[0][1];
}

int main() {
    long long n;
    scanf("%lld",&n);
    long long res = Pow(n);
    printf("%lld\n",res);

    return 0;
}


Fibonacci数列(二):

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define Mod 10000
using namespace std;

struct node{
    int matrix[2][2];
} base,R;

node matrixmul(node A,node B) {
    node C;
    for(int i=0; i<2; i++) {
        for(int j=0; j<2; j++) {
            C.matrix[i][j] = 0;
            for(int k=0; k<2; k++){
                C.matrix[i][j] += (A.matrix[i][k] * B.matrix[k][j]) % Mod;
                C.matrix[i][j] %= Mod;
            }
        }
    }
    return C;
}

int Pow(int n) {
    base.matrix[0][0] = base.matrix[0][1] = base.matrix[1][0] = 1;
    base.matrix[1][1] = 0;
    R.matrix[0][0] = R.matrix[0][1] = R.matrix[1][0] = 1;
    R.matrix[1][1] = 0;
    while(n) {
        if(n & 1)
            R = matrixmul(R,base);
        base = matrixmul(base,base);
        n >>= 1;
    }
    return R.matrix[0][1] % Mod;
}

int main() {
    int n;
    while(scanf("%d",&n),n != -1) {
        if(n == 0)
            printf("0\n");
        else
            printf("%d\n",Pow(n-1));

    }

    return 0;
}


递推求值:

#include <bits/stdc++.h>
#define Mod 1000007
using namespace std;
typedef long long ll;
ll a,b,c,n;

struct matrix {
    ll coo[3][3];
} R,base;

matrix mult(matrix A,matrix B) {
    matrix C;
    for(int i=0; i<3; i++) {
        for(int j=0; j<3; j++) {
            C.coo[i][j] = 0;
            for(int k=0; k<3; k++) {
                C.coo[i][j] += (A.coo[i][k] * B.coo[k][j] + Mod) % Mod;
                C.coo[i][j] = (C.coo[i][j] + Mod) % Mod;
            }
        }
    }
    return C;
}

matrix Pow(matrix base,ll n) {
    matrix r = {
        1,0,0,
        0,1,0,
        0,0,1
    };

    while(n) {
        if(n & 1)
            r = mult(r,base);
        base = mult(base,base);
        n >>= 1;
    }
    return r;
}

int main() {
    ll t;
    ll f1,f2;
    scanf("%lld",&t);
    while(t--) {
        scanf("%lld%lld%lld%lld%lld%lld",&f1,&f2,&a,&b,&c,&n);

        if(n == 0)
            printf("%d\n",(f2-f1*b-c+Mod)%Mod);
        if(n == 1)
            printf("%d\n",(f1+Mod)%Mod);
        else if(n == 2)
            printf("%d\n",(f2+Mod)%Mod);
        else {
            memset(R.coo,0,sizeof(R.coo));

            R.coo[0][0] = f2;
            R.coo[0][1] = f1;
            R.coo[0][2] = 1;

            matrix base= {
                0,1,0,
                0,0,0,
                0,0,1
            };
            base.coo[0][0] = b;
            base.coo[1][0] = a;
            base.coo[2][0] = c;

            base = Pow(base,n-2);
            R = mult(R,base);
            printf("%lld\n",(R.coo[0][0] + Mod)% Mod);
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值