【算法】矩阵快速幂优化动态规划

知识讲解

矩阵快速幂可以将 O ( n ) O(n) O(n) 的 DP 优化成 O ( log ⁡ n ) O(\log{n}) O(logn) 的时间复杂度。

前置知识——快速幂,可见:【算法基础:数学知识】4.4 快速幂


我们拿递推公式 d p [ i ] = d p [ i − 1 ] + [ i − 2 ] dp[i] = dp[i - 1] + [i - 2] dp[i]=dp[i1]+[i2] 举例,
为了将其表示成矩阵乘法,添加一个式子 d p [ i − 1 ] = d p [ i − 1 ] dp[i - 1] = dp[i - 1] dp[i1]=dp[i1]
两个式子合并可以得——
在这里插入图片描述
这是因为 d p [ i ] = 1 ∗ d p [ i − 1 ] + 1 ∗ [ i − 2 ] dp[i] = 1 * dp[i - 1] + 1 * [i - 2] dp[i]=1dp[i1]+1[i2] , d p [ i − 1 ] = 1 ∗ d p [ i − 1 ] + 0 ∗ [ i − 2 ] dp[i - 1] = 1 * dp[i - 1] + 0 * [i - 2] dp[i1]=1dp[i1]+0[i2]

这样就可以对递推矩阵使用快速幂来将 n 次递推的时间复杂度简化到 logn。

题目列表

[矩阵快速幂] 题目列表📕

题目列表来源:https://leetcode.cn/problems/string-transformation/solutions/2435348/kmp-ju-zhen-kuai-su-mi-you-hua-dp-by-end-vypf/

70. 爬楼梯

https://leetcode.cn/problems/climbing-stairs/
在这里插入图片描述

提示:
1 <= n <= 45

解法1——线性DP
class Solution {
    public int climbStairs(int n) {
        if (n <= 1) return n;
        int[] dp = new int[n];
        dp[0] = 1;
        dp[1] = 2;
        for (int i = 2; i < n; ++i) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[n - 1];
    }
}
解法2——矩阵快速幂

根据递推公式,可以得出矩阵快速幂的矩阵是什么。

class Solution {
    public int climbStairs(int n) {
        if (n <= 2) return n;
        // m是根据递推公式来的
        int[][] m = {
            {1, 1},
            {1, 0}
        };
        return pow(m, n - 2)[0][0];
    }

    public int[][] pow(int[][] m, int k) {
        // dp[0] = 1,dp[1] = 2
        int[][] res = {
            {2, 0},
            {1, 0}
        };
        for (; k != 0; k /= 2) {
            if (k % 2 == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public int[][] mul(int[][] x, int[][] y) {
        int[][] res = new int[2][2];
        for (int i = 0; i < 2; ++i) {
            for (int j = 0; j < 2; ++j) {
                res[i][j] = x[i][0] * y[0][j] + x[i][1] * y[1][j];
            }
        }
        return res;
    }
}

也可以更简洁一些,从 dp[0] 开始写,代码如下:

class Solution {
    public int climbStairs(int n) {
        // m是根据递推公式来的
        int[][] m = {
            {1, 1},
            {1, 0}
        };
        return pow(m, n)[0][0];
    }

    public int[][] pow(int[][] m, int k) {
        // dp[0] = 1
        int[][] res = {
            {1, 0},
            {0, 0}
        };
        for (; k != 0; k /= 2) {
            if (k % 2 == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public int[][] mul(int[][] x, int[][] y) {
        int[][] res = new int[2][2];
        for (int i = 0; i < 2; ++i) {
            for (int j = 0; j < 2; ++j) {
                res[i][j] = x[i][0] * y[0][j] + x[i][1] * y[1][j];
            }
        }
        return res;
    }
}

509. 斐波那契数

https://leetcode.cn/problems/fibonacci-number/
在这里插入图片描述
提示:
0 <= n <= 30

跟上一题差不多,注意初始值变了。

class Solution {
    public int fib(int n) {
        if (n == 0) return n;
        // m是根据递推公式来的
        int[][] m = {
            {1, 1},
            {1, 0}
        };
        return pow(m, n - 1)[0][0];
    }

    public int[][] pow(int[][] m, int k) {
        // dp[0] = 1
        int[][] res = {
            {1, 0},
            {0, 0}
        };
        for (; k != 0; k /= 2) {
            if (k % 2 == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public int[][] mul(int[][] x, int[][] y) {
        int[][] res = new int[2][2];
        for (int i = 0; i < 2; ++i) {
            for (int j = 0; j < 2; ++j) {
                res[i][j] = x[i][0] * y[0][j] + x[i][1] * y[1][j];
            }
        }
        return res;
    }
}

1137. 第 N 个泰波那契数

https://leetcode.cn/problems/n-th-tribonacci-number/

在这里插入图片描述
提示:
0 <= n <= 37
答案保证是一个 32 位整数,即 answer <= 2^31 - 1。

对矩阵稍作修改即可。

class Solution {
    public int tribonacci(int n) {
        if (n <= 1) return n;
        // m是根据递推公式来的
        int[][] m = {
            {1, 1, 1},
            {1, 0, 0},
            {0, 1, 0}
        };
        return pow(m, n - 2)[0][0];
    }

        public int[][] pow(int[][] m, int k) {
        // dp[0] = 0, dp[1] = 1, dp[2] = 1
        int[][] res = {
            {1, 0, 0},
            {1, 0, 0},
            {0, 0, 0}
        };
        for (; k != 0; k /= 2) {
            if (k % 2 == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public int[][] mul(int[][] x, int[][] y) {
        int[][] res = new int[3][3];
        for (int i = 0; i < 3; ++i) {
            for (int j = 0; j < 3; ++j) {
                res[i][j] = x[i][0] * y[0][j] + x[i][1] * y[1][j] + x[i][2] * y[2][j];
            }
        }
        return res;
    }
}

1220. 统计元音字母序列的数目

https://leetcode.cn/problems/count-vowels-permutation/

在这里插入图片描述

提示:
1 <= n <= 2 * 10^4

解法1——线性DP
class Solution {
    final long MOD = (int)1e9 + 7;
    public int countVowelPermutation(int n) {
        long[][] dp = new long[n][5];
        Arrays.fill(dp[0], 1);
        for (int i = 1; i < n; ++i) {
            dp[i][0] = dp[i - 1][1];
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD;
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1] + dp[i - 1][3] + dp[i - 1][4]) % MOD;
            dp[i][3] = (dp[i - 1][2] + dp[i - 1][4]) % MOD;
            dp[i][4] = dp[i - 1][0];
        }
        long ans = 0;
        for (long x: dp[n - 1]) ans = (ans + x) % MOD;
        return (int)ans;
    }
}
解法2——矩阵快速幂优化DP
class Solution {
    final long MOD = (int)1e9 + 7;

    public int countVowelPermutation(int n) {
        long[][] m = {
            {0, 1, 0, 0, 0},
            {1, 0, 1, 0, 0},
            {1, 1, 0, 1, 1},
            {0, 0, 1, 0, 1},
            {1, 0, 0, 0, 0}
        };
        long[][] res = pow(m, n - 1);
        long ans = 0;
        for (int i = 0; i < 5; ++i) ans = (ans + res[i][0]) % MOD;
        return (int)ans;
    }

    public long[][] pow(long[][] m, int k) {
        long[][] res = {
            {1, 0, 0, 0, 0},
            {1, 0, 0, 0, 0},
            {1, 0, 0, 0, 0},
            {1, 0, 0, 0, 0},
            {1, 0, 0, 0, 0}
        };
        for (; k != 0; k /= 2) {
            if (k % 2 == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public long[][] mul(long[][] x, long[][] y) {
        long[][] res = new long[5][5];
        for (int i = 0; i < 5; ++i) {
            for (int j = 0; j < 5; ++j) {
                res[i][j] = (x[i][0] * y[0][j] + x[i][1] * y[1][j] + x[i][2] * y[2][j] + x[i][3] * y[3][j] + x[i][4] * y[4][j]) % MOD;
            }
        }
        return res;
    }
}

552. 学生出勤记录 II(🚹递归公式 & 矩阵快速幂优化🐂)

https://leetcode.cn/problems/student-attendance-record-ii/
在这里插入图片描述
提示:
1 <= n <= 10^5

解法1——动态规划
class Solution {
    final int MOD = (int)1e9 + 7;

    public int checkRecord(int n) {
        // 长度,A 的数量,结尾连续 L 的数量
        int[][][] dp = new int[n + 1][2][3];    
        dp[0][0][0] = 1;
        for (int i = 1; i <= n; ++i) {
            // 以P结尾
            for (int j = 0; j < 2; ++j) {
                for (int k = 0; k < 3; ++k) {
                    dp[i][j][0] = (dp[i][j][0] + dp[i - 1][j][k]) % MOD;
                }
            }
            // 以A结尾
            for (int k = 0; k < 3; ++k) {
                dp[i][1][0] = (dp[i][1][0] + dp[i - 1][0][k]) % MOD;
            }
            // 以L结尾
            for (int j = 0; j < 2; ++j) {
                for (int k = 1; k < 3; ++k) {
                    dp[i][j][k] = (dp[i][j][k] + dp[i - 1][j][k - 1]) % MOD;
                }
            }
        }

        int ans = 0;
        for (int j = 0; j < 2; ++j) {
            for (int k = 0; k < 3; ++k) {
                ans = (ans + dp[n][j][k]) % MOD;
            }
        }
        return ans;
    }
}
解法2——矩阵快速幂优化DP(TODO)
在这里插入代码片

790. 多米诺和托米诺平铺⭐(🚹想出递推公式)

https://leetcode.cn/problems/domino-and-tromino-tiling/
在这里插入图片描述
提示:
1 <= n <= 1000

解法1——动态规划1 分最后一列的状态

https://leetcode.cn/problems/domino-and-tromino-tiling/solutions/1962465/duo-mi-nuo-he-tuo-mi-nuo-ping-pu-by-leet-7n0j/
在这里插入图片描述

class Solution {
    final int MOD = (int)1e9 + 7;

    public int numTilings(int n) {
        // 0空,1上,2下,3满
        int[][] dp = new int[n][4];
        dp[0][0] = dp[0][3] = 1;
        for (int i = 1; i < n; ++i) {
            dp[i][0] = dp[i - 1][3];
            dp[i][1] = (dp[i - 1][0] + dp[i - 1][2]) % MOD;
            dp[i][2] = (dp[i - 1][0] + dp[i - 1][1]) % MOD;
            dp[i][3] = (((dp[i - 1][0] + dp[i - 1][1]) % MOD + dp[i - 1][2]) % MOD + dp[i - 1][3]) % MOD;
        }
        return dp[n - 1][3];
    }
}
解法2——动态规划2 列出式子找通项公式(TODO 还没想明白)

https://leetcode.cn/problems/domino-and-tromino-tiling/solutions/1968516/by-endlesscheng-umpp/
在这里插入图片描述

class Solution {
    final long MOD = (long)1e9 + 7;

    public int numTilings(int n) {
        if (n <= 2) return n;
        long[] dp = new long[n + 1];
        dp[0] = 1;
        dp[1] = 1;
        dp[2] = 2;
        for (int i = 3; i <= n; ++i) {
            dp[i] = (dp[i - 1] * 2 + dp[i - 3]) % MOD;
        }
        return (int)dp[n];
    }
}
解法3——矩阵快速幂优化DP
class Solution {
    final int MOD = (int)1e9 + 7;

    public int numTilings(int n) {
        // 0空,1上,2下,3满
        long[][] m = {
            {0, 0, 0, 1},
            {1, 0, 1, 0},
            {1, 1, 0, 0},
            {1, 1, 1, 1}
        };
        return (int)pow(m, n - 1)[3][0];
    }

    public long[][] pow(long[][] m, int k) {
        long[][] res = {
            {1, 0, 0, 0},
            {0, 0, 0, 0},
            {0, 0, 0, 0},
            {1, 0, 0, 0}
        };
        for (; k != 0; k >>= 1) {
            if ((k & 1) == 1) res = mul(m, res);
            m = mul(m, m);
        }
        return res;
    }

    public long[][] mul(long[][] a, long[][] b) {
        long[][] c = new long[4][4];
        for (int i = 0; i < 4; ++i) {
            for (int j = 0; j < 4; ++j) {
                c[i][j] = (a[i][0] * b[0][j] + a[i][1] * b[1][j] + a[i][2] * b[2][j] + a[i][3] * b[3][j]) % MOD;
            }
        }
        return c;
    }
}
# 相关链接
[【力扣周赛】第 362 场周赛(⭐差分&匹配&状态压缩DP&矩阵快速幂优化DP&KMP](https://blog.csdn.net/qq_43406895/article/details/132824604)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wei *

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值