题目要求:
哈利·波特要考试了,他需要你的帮助。这门课学的是用魔咒将一种动物变成另一种动物的本事。例如将猫变成老鼠的魔咒是 haha,将老鼠变成鱼的魔咒是 hehe 等等。反方向变化的魔咒就是简单地将原来的魔咒倒过来念,例如 ahah 可以将老鼠变成猫。另外,如果想把猫变成鱼,可以通过念一个直接魔咒 lalala,也可以将猫变老鼠、老鼠变鱼的魔咒连起来念:hahahehe。
现在哈利·波特的手里有一本教材,里面列出了所有的变形魔咒和能变的动物。老师允许他自己带一只动物去考场,要考察他把这只动物变成任意一只指定动物的本事。于是他来问你:带什么动物去可以让最难变的那种动物(即该动物变为哈利·波特自己带去的动物所需要的魔咒最长)需要的魔咒最短?例如:如果只有猫、鼠、鱼,则显然哈利·波特应该带鼠去,因为鼠变成另外两种动物都只需要念 4 个字符;而如果带猫去,则至少需要念 6 个字符才能把猫变成鱼;同理,带鱼去也不是最好的选择。
输入格式:
输入说明:输入第 1 行给出两个正整数 n (≤100)和 m,其中 n 是考试涉及的动物总数,m 是用于直接变形的魔咒条数。为简单起见,我们将动物按 1~n 编号。随后 m 行,每行给出了 3 个正整数,分别是两种动物的编号、以及它们之间变形需要的魔咒的长度(≤100),数字之间用空格分隔。
输出格式:
输出哈利·波特应该带去考场的动物的编号、以及最长的变形魔咒的长度,中间以空格分隔。如果只带1只动物是不可能完成所有变形要求的,则输出 0。如果有若干只动物都可以备选,则输出编号最小的那只。
输入样例:
6 11
3 4 70
1 2 1
5 4 50
2 6 50
5 6 60
1 3 70
4 6 60
3 6 80
5 1 100
2 4 60
5 2 80
输出样例:
4 70
题解:
思路如注释所示,可通过所有测试点。
#include <bits/stdc++.h>
using namespace std;
#define MaxVertexNum 100 // 最大顶点数
#define INFINITY 65535
typedef int Vertex; // 顶点类型为整型
typedef int WeightType; // 权值为整型
typedef struct ENode *PtrToENode; // 边结点
struct ENode {
Vertex V1, V2; // 有向边<V1,V2>
WeightType Weight; // 权重
};
typedef PtrToENode Edge;
typedef struct GNode *PtrToGNode;
struct GNode {
int Nv; // 顶点数
int Ne; // 边数
WeightType G[MaxVertexNum][MaxVertexNum]; // 邻接矩阵
};
typedef PtrToGNode MGraph;
MGraph CreateGraph(int VertexNum) {
Vertex V, W;
MGraph Graph;
Graph = (MGraph)malloc(sizeof(struct GNode));
Graph->Nv = VertexNum;
Graph->Ne = 0;
for (V = 0; V < Graph->Nv; V++)
for (W = 0; W < Graph->Nv; W++)
Graph->G[V][W] = INFINITY;
return Graph;
}
void InsertEdge(MGraph Graph, Edge E) {
// 因为是无向图插入<V1,V2>,<V2,V1>
Graph->G[E->V1][E->V2] = E->Weight;
Graph->G[E->V2][E->V1] = E->Weight;
}
MGraph BuildGraph() {
MGraph Graph;
Edge E;
int Nv, i;
cin >> Nv;
Graph = CreateGraph(Nv);
cin >> Graph->Ne;
if (Graph->Ne != 0) {
E = (Edge)malloc(sizeof(struct ENode));
for (i = 0; i < Graph->Ne; i++) {
cin >> E->V1 >> E->V2 >> E->Weight;
E->V1--; E->V2--;
InsertEdge(Graph, E); // 插入边
}
free(E); // 释放边结构体内存
}
return Graph;
}
void Floyd(MGraph Graph, WeightType D[][MaxVertexNum]) {
Vertex i, j, k;
for (i = 0; i < Graph->Nv; i++)
for (j = 0; j < Graph->Nv; j++) {
D[i][j] = Graph->G[i][j];
}
for (k = 0; k < Graph->Nv; k++)
for (i = 0; i < Graph->Nv; i++)
for (j = 0; j < Graph->Nv; j++) {
if (D[i][j] > D[i][k] + D[k][j])
D[i][j] = D[i][k] + D[k][j];
}
}
WeightType FindMaxDist(WeightType D[][MaxVertexNum], Vertex i, int N) {
WeightType MaxDist = 0;
Vertex j;
for (j = 0; j < N; j++)
if (i != j && D[i][j] > MaxDist)
MaxDist = D[i][j];
return MaxDist;
}
void FindAnimal(MGraph Graph) {
WeightType D[MaxVertexNum][MaxVertexNum], MaxDist, MinDist;
Vertex Animal, i;
Floyd(Graph, D);
MinDist = INFINITY;
for (i = 0; i < Graph->Nv; i++) {
MaxDist = FindMaxDist(D, i, Graph->Nv);
if (MaxDist == INFINITY) {
cout << "0\n";
return;
}
if (MinDist > MaxDist) {
MinDist = MaxDist; Animal = i + 1;
}
}
cout << Animal << " " << MinDist << "\n";
}
int main() {
MGraph G = BuildGraph();
FindAnimal(G);
free(G); // 释放图结构体内存
return 0;
}
总结:
1.这道题用了两个结构体,一个用来存储邻接矩阵的具体数值以及顶点数和边数, 另一个用来存储一个临时的边结点,每次使用完清除。
2.用到了Floyd算法,这种算法本质上是指遍历有没有一个中间结点能使一个结点到另一个结点的路径更短,如果有,则更换最短路径值。