牛客网-牛牛和妞妞拿扑克牌做游戏

博客围绕题目展开,介绍了解题思路为暴力循环,并提及了程序相关内容,整体聚焦于Java编程中使用暴力循环来解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
在这里插入图片描述
在这里插入图片描述
思路:
暴力循环

程序:

import java.text.DecimalFormat;
import java.util.Scanner;

public class subject1 {
	public static double haveSuccess(int[] array1, int[] array2) {
		if(array1 == null || array2 == null) {
			return 0;
		}
		int sum1 = 0, sum2 = 0;
		for(int i = 0; i < array1.length; i ++) {
			sum1 += array1[i];
			sum2 += array2[i];
		}
		int[] arr = new int[13];
		for(int i = 0; i < 13; i ++) {//定义每张牌有4张
			arr[i] = 4;
		}
		for(int i = 0; i < 3; i ++) {//得出每种大小的牌除取出之外,还剩多少张
			arr[array1[i] - 1] -= 1;
			arr[array2[i] - 1] -= 1;
		}
		int index = 0;
		int temp = 0;
		int[] array = new int[46];
		for(int i = 0; i < 13; i ++) {减去已经取出的牌
			temp = arr[i];
			while(temp != 0) {
				array[index ++] = i + 1;
				temp --;
			}
		}
		int count = 0;
		for(int i = 0; i < 46; i ++) {//取两张牌,暴力循环,判断大小
			for(int j = 0; j < 46; j ++) {
				if(i != j) {
					if(sum1 + array[i] > sum2 + array[j]) {
						count ++;
					}
				}
			}
		}
		DecimalFormat df = new DecimalFormat("0.0000");//保留小数点后四位
		return (Double.parseDouble(df.format((double) (count) / (46 * 45))));
	}
	public static void main(String args[]) {
		Scanner sc = new Scanner(System.in);
		int[] arr1 = new int[3];
		int[] arr2 = new int[3];
		for(int i = 0; i < 3; i ++) {
			arr1[i] = sc.nextInt();
		}
		for(int i = 0; i < 3; i ++) {
			arr2[i] = sc.nextInt();
		}
		System.out.println(haveSuccess(arr1, arr2));
	}
}
数据集介绍:神经元细胞核检测数据集 一、基础信息 数据集名称:神经元细胞核检测数据集 图片数量: - 训练集:16,353张 - 测试集:963张 分类类别: - Neuron(神经元细胞核):中枢神经系统的基本功能单位,检测其形态特征对神经科学研究具有重要意义。 标注格式: - YOLO格式,包含边界框坐标及类别标签,适用于目标检测任务 - 数据来源于显微镜成像,覆盖多种细胞分布形态成像条件 二、适用场景 神经科学研究: 支持构建神经元定位分析工具,助力脑科学研究神经系统疾病机理探索 医学影像分析: 适用于开发自动化细胞核检测系统,辅助病理诊断细胞计数任务 AI辅助诊断工具开发: 可用于训练检测神经元退行性病变的模型,支持阿尔茨海默症等神经疾病的早期筛查 生物教育及研究: 提供标准化的神经元检测数据,适用于高校生物学实验室科研机构的教学实验 三、数据集优势 大规模训练样本: 包含超1.6万张训练图像,充分覆盖细胞核的多样分布状态,支持模型深度学习 精准定位标注: 所有标注框均严格贴合细胞核边缘,确保目标检测模型的训练精度 任务适配性强: 原生YOLO格式可直接应用于主流检测框架(YOLOv5/v7/v8等),支持快速模型迭代 生物学特性突出: 专注神经元细胞核的形态特征,包含密集分布、重叠细胞等真实生物场景样本 跨领域应用潜力: 检测结果可延伸应用于细胞计数、病理分析、药物研发等多个生物医学领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值