初步认识快速幂

新手做的小小总结。

概念

快速幂是在进行大数计算时,为提高运算速率一个幂式取模(余)的运算。

举个栗子:(这里拿2举例了,其他数也一样)
幂为偶数:
    2^16
   =4(2^2)^8
   =16(4^2)^4
   =256(16^2)^2
幂为奇数:
(偶数的已经有思路了,那么就把奇转化成偶,这样就要分出来一个1,15=14+1,因此还需要用一个变量来记录它,这里我用一个变量cnt)
    2^15
  ==>2^14        cnt=1*2=2;//拿出来一个2
  ==>4^7        cnt=2;
  (这里没有再拿出来1了,不过现在又变成奇了,下次就要拿了)
  ==>4^6        cnt=2*4=8;
(此时拿出来的是一个4(7=6+1),另外cnt只是把它们分开计算,因此都还是乘的关系)
  ==>16^3         cnt=8;
  ==>16^2        cnt=8*16=128;
  ==>256^1        cnt=128;

结果:2^15=256*128;

总结:

对于一般的大数a^b。当b为偶数时,a^b可以转为a^2的b/2次方。当b为奇数时,a^b可以转为a^2的b/2次方,再乘以a。而a^2的b/2次方,以可以使用上述方式转为a^4的b/4次方再乘以某个数。

例题:

P1226 【模板】快速幂||取余运算
题目描述
输入b,p,k的值,求b^p mod k的值。其中b,p,k*k为长整型数。

输入输出格式
输入格式:
三个整数b,p,k.

输出格式:
输出“b^p mod k=s”

s为运算结果

输入输出样例
输入样例#1:
2 10 9
输出样例#1:
2^10 mod 9=7

我的代码:

#include <iostream>
#define ll long long
using namespace std;

ll f(ll x,ll y,ll k)
{
    ll ans=1;     //累积初始设为1;累加初始设为0。
    while(y)
    {
        if(y&1) ans=(ans*x)%k;   //注意不能写成ans*=x%k;下同不能。不懂的可以了解一下取模运算。
        y>>=1; x=(x*x)%k;        //y>>=1;是位运算,不要忘了“=”,同样也可以写成y/=2。
    }
    return ans;
}

int main()
{
    ll b,p,k;
    cin>>b>>p>>k;
    cout<<b<<"^"<<p<<" mod "<<k<<"="<<f(b,p,k)%k; 
    return 0;
}

对于快速幂里的取模问题可以看看别人写的博客
https://blog.csdn.net/java_c_android/article/details/55802041

可练习的题目:
NYoj88 汉诺塔(一)
http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=88

另有矩阵快速幂:
P3390 【模板】矩阵快速幂
https://www.luogu.org/problemnew/show/P3390

参考:

快速幂及其简单应用
https://blog.csdn.net/usth_prophet/article/details/54961401

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值