Leetcode589.N叉树的前序遍历

题目描述

给定一个 N 叉树,返回其节点值的前序遍历。

示例:

在这里插入图片描述

返回其前序遍历: [1,3,5,6,2,4]。

题解

递归(java)

思路:效率很低,但是比较好理解的递归思路

class Solution {
    public List<Integer> preorder(Node root) {
        if (root == null) return new LinkedList<>();
        LinkedList<Integer> list = new LinkedList<>();
        
        list.add(root.val);
        for (Node child : root.children) {
            if (child != null) {
                list.addAll(preorder(child));
            }
        }
        return list;
    }
}

复杂度分析

  • 时间复杂度: O ( M ) O(M) O(M), 其中 M 是 N 叉树中的节点个数。每个节点只会入栈和出栈各一次。
  • 空间复杂度: O ( N ) O(N) O(N), 在最坏的情况下,这棵 N 叉树只有 2 层,所有第 2 层的节点都是根节点的孩子。将根节点推出栈后,需要将这些节点都放入栈,共有 M - 1M−1 个节点,因此栈的大小为 O(M)O(M)。

迭代(java)

思路:感觉写的比较冗余,还是记录下来吧。主要思路就是在stack中加入子节点之前,先通过栈tmp,倒置一下顺序再添加。

class Solution {
    public List<Integer> preorder(Node root) {
        LinkedList<Node> stack = new LinkedList<>();
        LinkedList<Node> tmp = new LinkedList<>();
        LinkedList<Integer> list = new LinkedList<>();
        
        if (root == null) return list;
        stack.addFirst(root);
        while(!stack.isEmpty()) {
            Node head = stack.pollFirst();
            list.addLast(head.val);
            for (Node node : head.children) {
                if (node != null) {
                    tmp.addLast(node);
                }
            }
            while (!tmp.isEmpty()) {
                    Node item = tmp.pollLast();
                    stack.addFirst(item);
            }
        }
        return list;
    }
}
  • 时间复杂度: O ( M ) O(M) O(M)
  • 空间复杂度: O ( M ) O(M) O(M)

递归2(java)

思路:同样是递归,这个是就是0s,第一种写法就是8s。学习了。原因没太想明白。


class Solution {
    List<Integer> res = new ArrayList<Integer>();
    public List<Integer> preorder(Node root) {
        inOrder(root);
        return res;
    }
    public void inOrder(Node root) {
        if(root == null) {
            return;
        }
        res.add(root.val);
        int s = root.children.size();
        for(int i = 0; i < s; i++) {
            inOrder(root.children.get(i));
        }
    }
}
  • 时间复杂度: O ( M ) O(M) O(M)
  • 空间复杂度: O ( M ) O(M) O(M)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值