题目描述
给定一个 N 叉树,返回其节点值的前序遍历。
示例:
返回其前序遍历: [1,3,5,6,2,4]。
题解
递归(java)
思路:效率很低,但是比较好理解的递归思路
class Solution {
public List<Integer> preorder(Node root) {
if (root == null) return new LinkedList<>();
LinkedList<Integer> list = new LinkedList<>();
list.add(root.val);
for (Node child : root.children) {
if (child != null) {
list.addAll(preorder(child));
}
}
return list;
}
}
复杂度分析
- 时间复杂度: O ( M ) O(M) O(M), 其中 M 是 N 叉树中的节点个数。每个节点只会入栈和出栈各一次。
- 空间复杂度: O ( N ) O(N) O(N), 在最坏的情况下,这棵 N 叉树只有 2 层,所有第 2 层的节点都是根节点的孩子。将根节点推出栈后,需要将这些节点都放入栈,共有 M - 1M−1 个节点,因此栈的大小为 O(M)O(M)。
迭代(java)
思路:感觉写的比较冗余,还是记录下来吧。主要思路就是在stack中加入子节点之前,先通过栈tmp,倒置一下顺序再添加。
class Solution {
public List<Integer> preorder(Node root) {
LinkedList<Node> stack = new LinkedList<>();
LinkedList<Node> tmp = new LinkedList<>();
LinkedList<Integer> list = new LinkedList<>();
if (root == null) return list;
stack.addFirst(root);
while(!stack.isEmpty()) {
Node head = stack.pollFirst();
list.addLast(head.val);
for (Node node : head.children) {
if (node != null) {
tmp.addLast(node);
}
}
while (!tmp.isEmpty()) {
Node item = tmp.pollLast();
stack.addFirst(item);
}
}
return list;
}
}
- 时间复杂度: O ( M ) O(M) O(M)
- 空间复杂度: O ( M ) O(M) O(M)
递归2(java)
思路:同样是递归,这个是就是0s,第一种写法就是8s。学习了。原因没太想明白。
class Solution {
List<Integer> res = new ArrayList<Integer>();
public List<Integer> preorder(Node root) {
inOrder(root);
return res;
}
public void inOrder(Node root) {
if(root == null) {
return;
}
res.add(root.val);
int s = root.children.size();
for(int i = 0; i < s; i++) {
inOrder(root.children.get(i));
}
}
}
- 时间复杂度: O ( M ) O(M) O(M)
- 空间复杂度: O ( M ) O(M) O(M)