二次规划(Qp)在机械臂(二维平面)轨迹规划中的应用Matlab仿真实例

摘要

本技术报告介绍了如何使用MATLAB来控制和模拟一个两自由度的机械臂。我们详细讨论了机械臂的建模、控制策略、轨迹规划、数值优化以及可视化等关键方面。通过MATLAB的强大功能,我们能够实现高效的机械臂运动控制和仿真。

引言

机械臂是工业自动化和机器人技术的重要组成部分,具有广泛的应用领域,包括制造业、医疗、航空航天等。本报告旨在介绍如何使用MATLAB来控制和模拟一个两自由度的机械臂。我们将通过建模、控制策略、数值优化和可视化来展示机械臂的运动和轨迹跟踪。

  • 机械臂模型

本文选取了一个二连杆的机械臂模型,因为用二连杆机械臂建立动力学和运动学模型都非常简单。本文连杆长度为:L=1.0m,机械臂各关节初始角度均为theta=0.5(弧度制)。其中机械臂末端位置为

利用正向运动学描述为:

其雅可比矩阵为:

  • 控制策略

我们给定机械臂初始角度值为:theta=[0.5,0.5] 并通过正向运动学方程计算其末端执行器初始位置,也就是说给定不同的初始关节角度末端执行器会有不同的初始位置。同时设置末端执行器目标位置,通过利用二次规划(Qp)求解其需要的关节角度增量以控制机械臂达到目标位置,通过Qp求解的优点在于不用求解机械臂的逆运动学函数,这在拥有更高自由度的机械臂上应用时具备适用性。下面会详细介绍如何设置Qp求解函数。

  • 轨迹生成

利用matlab里面的线性插值函数,对初始位置和目标位置进行N次插值,生成目标轨迹x_target,y_target为N×1的矩阵。

接下来就是让末端执行器跟踪x_target,y_target。将其转化为二规划形式并Matlab里面的Qp求解器进行求解最优控制输入。

  • 数值优化与Qp求解

数值优化是一种数学方法,旨在找到一个函数的最优解或最优值,满足一组约束条件。在数值优化中,我们通常需要最小化(或最大化)一个目标函数,同时满足一系列等式约束和不等式约束。这些问题可以在许多领域中找到应用,包括工程、经济学、物理学、机器学习和计算机科学等。

具体来说,数值优化的目标是找到使目标函数达到最小(或最大)值的一组决策变量的取值。这些决策变量可以表示设计参数、控制策略、投资组合或任何需要优化的量。这些算法可以是梯度下降、牛顿法、拟牛顿法、线性规划、二次规划等等。

二次规划的一般形式可以表示为:

其中:

Qp求解器的设计

本文Qp求解器设计如下:

首先定义定义二次型函数:

相应的:

为关节角度,J为雅可比矩阵

我们设置目标位置为x_target,y_target,利用当前机械臂末端执行器的位置x_current,y_current可以求出x,y位置跟踪误差

同时可以利用雅可比矩阵求出末端执行器速度:

我们将上述作为控制目标

关节速度作为约束:

b = [dtheta1_ub; -dtheta1_lb; dtheta2_ub; -dtheta2_lb];

构建Qp求解器:

利用matlab里面的quadprog函数

五、结果展示

机械臂轨迹跟踪效果(初始位置:[1.4,1.3]  目标位置:[0.6,0.4] T=100 dt=0.01)

机械臂初始位置

机械臂运动到目标位置,绿色线段为机械臂移动轨迹

机械臂关节角度随时间变化曲线

末端执行位置随时间变化曲线

   

末端执行器位置与目标位置跟踪误差曲线

Qp求解的最优关节角度变化量曲线

六、结论:

本文,我们成功通过二次规划(Qp)的方法实现了机械臂的轨迹跟踪控制。机械臂能够按照目标轨迹移动,并且在运动过程中实时调整关节角度以减小位置和速度误差。雅可比矩阵在轨迹跟踪和控制过程中发挥了关键作用,将关节空间和笛卡尔空间联系起来,实现了控制目标。

总的来说,这个代码示例提供了一个简单而有效的方法,用于控制和轨迹跟踪机械臂。这对于机械臂控制的初学者和研究人员来说是一个有用的起点,可以进一步扩展和优化以满足更复杂的应用需求。通过不断改进和调整控制算法和参数,可以实现更高精度的轨迹跟踪和控制性能。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chen-ZLong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值