机械臂灵活工作空间初步研究

工作:基于Matlab对宇树Z1机械臂灵活度研究

对于抓取任务规划器来说,机械手工作空间中可达末端位姿的预先规划是非常重要的。在此基础上,对于一个六自由度冗余度机械臂,研究如何充分发挥其冗余度特性,实现更灵巧的抓取,具有十分重要的意义。目前工作已经可以分析机械臂在可达工作工作空间某一点设置一半径构成圆面,并求该圆面的灵活度。

  1. 宇树机器人模型:

宇树Z1为6自由度机械臂,模型如下,关节限制如下:

  1. 灵活度分析

本文灵活度指的是将可达工作空间均匀划分成多个小立方体空间(子空间)在这个空间内嵌入球体(球体直径等于立方体边长)在球体表面均匀取一些点,并在这些点设置机械臂末端位姿,并求其运动学逆解,如果每个点都有解且解符合各关节极限则说明该点灵活度高,反之则低。示例如下:

1)、可达工作空间包络图:

本包络图有点云图通过con函数包络

2)、将可达工作空间栅格化形成由许多小立方体组成的子工作空间:

3)、在每个立方体内嵌入一个球体,球体直径等于立方体边长:

4)、在球体表面均匀取点,点和圆心的连线为机械臂末端执行器Z轴方向指向圆心:

末端执行器Z轴已经确定,接下来就是X\Y轴方向,根据赵冲等人在The Dexterity CapabilityMap for a Seven-Degree-of-FreedomManipulator 提出的研究指出,末端执行器X和Y轴方向设置并不影响该点位姿运动学逆解,所以我们只需保证X轴与球面相切即可。接下来就是设置相应位姿然后求运动学逆解即可。

  1. 机械臂末端执行器位姿设置

目前暂时只实现了圆平面上的点位姿设置,球体还在实验中。

在圆周上均匀取一些点:

黑色点为球心,红色与黄色点为机械臂末端执行器位置点与圆心连线为末端执行器Z轴方向。每个点与圆心连心与相邻连线夹角为45度。

位姿设置详细介绍:

如上所述我们在可达工作空间内任意取一点选一半径生成圆面与XY组成的平面平行,然后在圆上选一初始位姿点,之后每搁45度夹角取零一点。示例图如下:

例:我们在宇树工作空间内内任选一点,取点位置为(-290,0,170),圆半径为10,我们可以将初始位姿设置为[-300,0,170]*[0,-90,0]机械臂初始位姿效果如下。

各关节角度为: 0.0000 -3.0931 2.8714 -2.9199 0.0000 1.5708

结果为弧度制

我们将宇树Z1的关节限制转为弧度制:

结果表明在[-300,0,170]*[0,-90,0]这个位姿并不是机械臂可达位姿。

我们按照如上方法每间隔45度取一点,绕圆一周分析其逆解:

大致步骤如下:

设置末端执行器初始姿态与固定坐标轴相同

图示:

如图所示我们通过旋转和平移能获取A、B、C、D、E、F、G、H这八个点的位姿信息将这些位姿代入MATLAB的IKINE逆解函数中即可求出是否为可达工作空间从而判断该点灵活度,现给出这八个点位姿(已知A为[-300,0,170]*[0,-90,0]):

(A):location:(-300,0,170);posture:(0,-90,0);

(B):location:(-302.9,7.1,170);posture:(45,-90,0);

(C):location:(-310,10,170);posture:(90,-90,0);

(D):location:(-312.9,7.1,170);posture:(135,-90,0);

(E):location:(-320,0,170);posture:(180,-90,0);

(F):location:(-312.9,-7.1,170);posture:(-135,-90,0);

(G):location:(-310,-10,170);posture:(-90,-90,0);

(H):location:(-302.9,-7.1,170);posture:(-45,-90,0);

将这八个点位姿代入MATLAB逆运动学函数中求解得:

点(A):

0.0000 -3.0931 2.8714 -2.9199 0.0000 1.5708[X]

点(B):

-0.3168 2.6709 2.0160 1.5963 -2.0394 -1.5708[X]

点(C): 无解。

点(D):

-0.1976 2.8031 1.2845 2.1956 -0.5878 -1.5708[√]

点(E):

0.0000 -2.5887 -1.1006 -2.5939 0.0000 -1.5708[√]

点(F):

0.1976 2.6709 2.0149 -1.5442 2.5538 1.5708[X]

点(G): 无解。

点(H): 无解。

综上,在点-290,0,170以10为半径构成的圆周上取得的八个点中其中有5个点有解,5点中仅有2点的解在机器人关节角度内为可行解为点(D)、点(E)。所以该点平面灵活度为2/8×1=0.25

点D、E为可达位姿

4、结论:本次研究证明了机械臂灵活空间可视化的可行性,目前最大问题是:上面所有点和位姿设置都是本人手扣的,如果是整个可达工作空间可能会有上千个服务球那么位姿设置就不能手动设置。。。需要一个算法能够快速正确的设置机械臂末端姿态。。。目前我还在研究这个算法。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chen-ZLong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值