神经网络解析和深度学习简介

一、前言
  我们首先来看一个经典的神经网络结构:

  上面的神经网络是有三个部分组成,分别为输入层、隐藏层和输出层。输入层有3个输入单元,隐藏层有4个单元,输出层有2个单元。根据这个神经网络我们说明三点:
  (1)设计一个神经网络时,输入层与输出层的节点数往往是固定的,而中间层则可以自由指定;
  (2)神经网络结构图中的拓扑与箭头代表着预测过程时数据的流向,跟训练时的数据流有一定的区别;
  (3)结构图里的关键不是圆圈(代表“神经元”),而是连接线(代表“神经元”之间的连接)。每个连接线对应一个不同的权重(其值称为权值),这是需要训练得到的。

二、单层神经网络(感知器)
2.1、感知器的出现
  1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络。他给它起了一个名字–“感知器”(Perceptron)。感知器是当时首个可以学习的人工神经网络。Rosenblatt现场演示了其学习识别简单图像的过程,在当时的社会引起了轰动。
  人们认为已经发现了智能的奥秘,许多学者和科研机构纷纷投入到神经网络的研究中。美国军方大力资助了神经网络的研究,并认为神经网络比“原子弹工程”更重要。这段时间直到1969年才结束,这个时期可以看作神经网络的第一次高潮。
2.2、单层神经网络的结构
  在原来MP模型的“输入”位置添加神经元节点,标志其为“输入单元”。其余不变,于是我们就有了下图:在图中开始将权值w1, w2, w3写到“连接线”的中间。

  在“感知器”中,有两个层次。分别是输入层和输出层。输入层里的“输入单元”只负责传输数据,不做计算。输出层里的“输出单元”则需要对前面一层的输入进行计算。我们把需要计算的层次称之为“计算层”,并把拥有一个计算层的网络称之为“单层神经网络”。
  相比于前面的一个图,下图增加了一个输出结点。并对输入节点进行了加权计算,公式中的a1,a2,a3为输入变量,W为对应节点的权重。a与W进行相乘计算后在进行函数变换,如sigmoid变换,将数据样本分成两类。

2.3、单层神经网络的效果
  可以利用单层神经网络在二维平面中划出决策分界线,下图为感知器的分类效果。

2.4、出现的问题
  感知器只能做简单的线性分类任务。但是当时的人们热情太过于高涨,并没有人清醒的认识到这点。于是,当人工智能领域的巨擘Minsky指出这点时,事态就发生了变化。
  Minsky在1969年出版了一本叫《Perceptron》的书,里面用详细的数学证明了感知器的弱点,尤其是感知器对XOR(异或)这样的简单分类任务都无法解决。Minsky认为,如果将计算层增加到两层,计算量则过大,而且没有有效的学习算法。所以,他认为研究更深层的网络是没有价值的。
  由于Minsky的巨大影响力以及书中呈现的悲观态度,让很多学者和实验室纷纷放弃了神经网络的研究。神经网络的研究陷入了冰河期。这个时期又被称为“AI winter”。接近10年以后,对于两层神经网络的研究才带来神经网络的复苏。

三、两层神经网络(多层感知器)
3.1、背景
  Minsky说过单层神经网络无法解决异或问题。但是当增加一个计算层以后,两层神经网络不仅可以解决异或问题,而且具有非常好的非线性分类效果。不过两层神经网络的计算是一个问题,没有一个较好的解法。
  1986年,Rumelhar和Hinton等人提出了反向传播(Backpropagation,BP)算法,解决了两层神经网络所需要的复杂计算量问题,从而带动了业界使用两层神经网络研究的热潮。目前,大量的教授神经网络的教材,都是重点介绍两层(带一个隐藏层)神经网络的内容。
  那个时候的Hinton还很年轻,30年以后,正是他重新定义了神经网络,带来了神经网络复苏的又一春。
3.2、两层神经网络的结构
  两层神经网络除了包含一个输入层,一个输出层以外,还增加了一个中间层。此时,中间层和输出层都是计算层。我们扩展上节的单层神经网络,在右边新加一个层次(只含有一个节点)。
  现在,我们的权值矩阵增加到了两个,我们用上标来区分不同层次之间的变量。以下图为例来说明具体的结构和计算过程:

  然后利用计算得到的a1和a2去计算最终的z。

3.3、两层神经网络的效果
  下面就是一个例子,红色的线与蓝色的线代表数据。而红色区域和蓝色区域代表由神经网络划开的区域,两者的分界线就是决策分界。

  可以发现,面对复杂的非线性分类任务,两层(带一个隐藏层)神经网络可以分类的很好。

3.4、出现的问题
  两层神经网络在多个地方的应用说明了其效用与价值。10年前困扰神经网络界的异或问题被轻松解决。神经网络在这个时候,已经可以发力于语音识别,图像识别,自动驾驶等多个领域。
  历史总是惊人的相似,神经网络的学者们再次登上了《纽约时报》的专访。人们认为神经网络可以解决许多问题。就连娱乐界都开始受到了影响,当年的《终结者》电影中的阿诺都赶时髦地说一句:我的CPU是一个神经网络处理器,一个会学习的计算机。
  但是神经网络仍然存在若干的问题:尽管使用了BP算法,一次神经网络的训练仍然耗时太久,而且困扰训练优化的一个问题就是局部最优解问题,这使得神经网络的优化较为困难。同时,隐藏层的节点数需要调参,这使得使用不太方便,工程和研究人员对此多有抱怨。
  90年代中期,由Vapnik等人发明的SVM(Support Vector Machines,支持向量机)算法诞生,很快就在若干个方面体现出了对比神经网络的优势:无需调参;高效;全局最优解。基于以上种种理由,SVM迅速打败了神经网络算法成为主流。神经网络的研究再次陷入了冰河期。当时,只要你的论文中包含神经网络相关的字眼,非常容易被会议和期刊拒收,研究界那时对神经网络的不待见可想而知。

四、多层神经网络(深度学习)
4.1、背景
  在被人摒弃的10年中,有几个学者仍然在坚持研究。这其中的棋手就是加拿大多伦多大学的Geoffery Hinton教授。
  2006年,Hinton在《Science》和相关期刊上发表了论文,首次提出了“深度信念网络”的概念。与传统的训练方式不同,“深度信念网络”有一个“预训练”(pre-training)的过程,这可以方便的让神经网络中的权值找到一个接近最优解的值,之后再使用“微调”(fine-tuning)技术来对整个网络进行优化训练。这两个技术的运用大幅度减少了训练多层神经网络的时间。他给多层神经网络相关的学习方法赋予了一个新名词 —“深度学习”。
  很快,深度学习在语音识别领域暂露头角。接着,2012年,深度学习技术又在图像识别领域大展拳脚。Hinton与他的学生在ImageNet竞赛中,用多层的卷积神经网络成功地对包含一千类别的一百万张图片进行了训练,取得了分类错误率15%的好成绩,这个成绩比第二名高了近11个百分点,充分证明了多层神经网络识别效果的优越性。
  在这之后,关于深度神经网络的研究与应用不断涌现。由于篇幅原因,本文不介绍CNN(Conventional Neural Network,卷积神经网络)与RNN(Recurrent Neural Network,递归神经网络)的架构,下面我们只讨论普通的多层神经网络。
4.2、多层神经网络的结构
  在两层神经网络的输出层后面,继续添加层次。原来的输出层变成中间层,新加的层次成为新的输出层。所以可以得到下图。

  多层神经网络中,输出也是按照一层一层的方式来计算。从最外面的层开始,算出所有单元的值以后,再继续计算更深一层。只有当前层所有单元的值都计算完毕以后,才会算下一层。有点像计算向前不断推进的感觉。所以这个过程叫做“正向传播”。
  在实际应用中,我们发现可以在参数不变的情况下通过增加层数来对数据样本进行更深层次的表达。用下面两个图就可以说明问题:

  上图的网络中,虽然参数数量仍然是33,但却有4个中间层,是原来层数的接近两倍。这意味着一样的参数数量,可以用更深的层次去表达。
  更深层次的表示特征可以这样理解,随着网络的层数增加,每一层对于前一层次的抽象表示更深入。在神经网络中,每一层神经元学习到的是前一层神经元值的更抽象的表示。例如第一个隐藏层学习到的是“边缘”的特征,第二个隐藏层学习到的是由“边缘”组成的“形状”的特征,第三个隐藏层学习到的是由“形状”组成的“图案”的特征,最后的隐藏层学习到的是由“图案”组成的“目标”的特征。通过抽取更抽象的特征来对事物进行区分,从而获得更好的区分与分类能力。

五、总结
5.1、神经网络的发展历程
  神经网络的发展历史曲折荡漾,既有被人捧上天的时刻,也有摔落在街头无人问津的时段,中间经历了数次大起大落。从单层神经网络(感知器)开始,到包含一个隐藏层的两层神经网络,再到多层的深度神经网络,一共有三次兴起过程。如下图所示:

5.2、神经网络的效果
  随着神经网络的发展,其表示性能越来越强。从单层神经网络,到两层神经网络,再到多层神经网络,随着网络层数的增加,以及激活函数的调整,神经网络所能拟合的决策分界平面的能力越来越强。如下图所示:

5.3、神经网络发展的外在原因
  光有强大的内在能力,并不一定能成功。一个成功的技术与方法,不仅需要内因的作用,还需要时势与环境的配合。神经网络的发展背后的外在原因可以被总结为:更强的计算性能,更多的数据,以及更好的训练方法。只有满足这些条件时,神经网络的函数拟合能力才能得已体现,如下图所示:

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值