使用 Ollama 部署 TinyLlama (1.1B) 的完整流程,包含直接拉取和手动部署两种方案

以下是使用 Ollama 部署 TinyLlama (1.1B) 的完整流程,包含直接拉取和手动部署两种方案:


方案一:直接通过 Ollama 官方库部署(推荐)

1. 安装 Ollama
# Linux/macOS 一键安装
curl -fsSL https://ollama.com/install.sh | sh

# Windows 用户:从官网下载安装包
# https://ollama.com/download
2. 拉取并运行 TinyLlama
# 自动下载模型(约 300MB)
ollama run tinyllama

# 测试问答
>>> 用一句话解释什么是人工智能
### Ollama 大模型后的部署流程 Ollama 是一个用于本地部署运行大语言模型的工具,提供了简单的命令行接口来管理模型。以下是使用 Ollama 大模型后进行部署完整流程: #### 1. 安装 Ollama 在开始之前,需要确保 Ollama 已正确安装。可以通过以下命令检查是否安装成功: ```bash ollama version ``` 如果未安装,可以参考官方文档或引用内容[^2]中的安装步骤。 #### 2. 大模型 使用 `ollama pull` 命令从注册表中所需的模型。例如: ```bash ollama pull llama2 ``` 此命令会从远程注册表下载指定的模型文件到本地[^1]。确保网络连接正常,因为某些模型可能非常大。 #### 3. 验证模型下载 下载完成后,可以通过以下命令验证模型是否成功: ```bash ollama list ``` 该命令将列出所有已下载的模型。如果目标模型出现在列表中,则说明下载成功[^3]。 #### 4. 设置自定义模型路径(可选) 如果需要更改默认的模型存储路径,可以通过环境变量设置自定义路径。例如: ```bash export OLlama_MODEL_PATH=/custom/path/to/models ``` 然后重新启动 Ollama 服务以应用更改[^1]。 #### 5. 启动 Ollama 服务 使用以下命令启动 Ollama 服务: ```bash ollama serve ``` 此命令将在本地启动一个 HTTP 服务,默认监听端口为 `11434`。可以通过浏览器访问 `http://localhost:11434` 来查看服务状态[^1]。 #### 6. 运行模型 通过 `ollama run` 命令运行已下载的模型。例如: ```bash ollama run llama2 --prompt "Hello, how are you?" ``` 此命令将使用指定的模型处理输入提示并返回结果[^1]。 #### 7. 测试与调试 如果遇到问题,可以检查日志输出或使用 `ollama help` 获更多帮助信息。例如: ```bash ollama help pull ``` 这将显示 `pull` 命令的详细用法参数说明[^1]。 #### 8. 离线部署(可选) 对于离线环境,可以手动复制模型文件夹到目标机器。确保包括 `models` 文件夹及其子目录中的所有文件,特别是 `manifest` 文件夹的内容,否则可能导致识别失败[^3]。 --- ### 注意事项 - 在执行任何操作前,请确保有足够的磁盘空间。 - 如果模型失败,可能是由于网络限制或模型不可用,请参考相关错误信息进行排查[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值