P7265 Look At The Sky 题解

Description

令一个序列 S S S k k k 阶平均数为 ∑ i = 1 ∣ S ∣ S i k ( ∑ i = 1 ∣ S ∣ S i ) k \frac {\sum_{i=1}^{|S|} S_i^k} {\left(\sum_{i=1}^{|S|} S_i \right)^k} (i=1SSi)ki=1SSik

令一个图的 k k k 阶权值为,其所有连通块的大小组成的序列的 k k k 阶平均数。

请对于 k = 0 , 1 , 2 , ⋯ K k=0,1,2,\cdots K k=0,1,2,K,求出点数为 n n n 的简单图的 k k k 阶权值和,答案对 998244353 998244353 998244353 取模。

1 ≤ N ≤ 2 × 1 0 5 , 1 ≤ K ≤ 5000 1 \le N \le 2 \times 10^5,1 \le K \le 5000 1N2×105,1K5000,时限 1s \texttt{1s} 1s

加强版: 1 ≤ N , K ≤ 5 × 1 0 5 1 \le N,K \le 5 \times 10^5 1N,K5×105,时限 6s \texttt{6s} 6s

Solution

算法一

n n n 个点的简单图有 F n F_n Fn 个, n n n 个点的连通图 G n G_n Gn 个。令它们的 EGF \text{EGF} EGF 分别为 F ( x ) , G ( x ) F(x),G(x) F(x),G(x) ,根据 exp ⁡ \exp exp 的性质,不难发现

e G ( x ) = F ( x ) e^{G(x)}=F(x) eG(x)=F(x)

同时,有
F n = 2 n ( n − 1 ) 2 F_n=2^{\frac {n(n-1)} 2} Fn=22n(n1)

求出每一个 F n F_n Fn 后多项式 ln ⁡ \ln ln 就得到了每一个 G n G_n Gn

考虑答案的式子

a n s k = ∑ i = 1 n i k G i F n − i ans_k=\sum_{i=1}^n i^k G_i F_{n-i} ansk=i=1nikGiFni

阶乘逆元预处理,然后暴力求即可。时间复杂度 O ( n k ) O(nk) O(nk)

算法二

推式子。

= ∑ i = 1 n ( n i ) i k G i F n − i =\sum_{i=1}^n {n \choose i}i^k G_i F_{n-i} =i=1n(in)ikGiFni

= ∑ i = 1 n ( n i ) ( ∑ j = 0 k { k j } j ! ( i j ) ) G i F n − i =\sum_{i=1}^n {n \choose i}\left(\sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j!{i \choose j}\right) G_i F_{n-i} =i=1n(in)(j=0k{kj}j!(ji))GiFni

= ∑ j = 0 k { k j } j ! ∑ i = 1 n ( n i ) ( i j ) G i F n − i =\sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j! \sum_{i=1}^n {n \choose i}{i \choose j} G_i F_{n-i} =j=0k{kj}j!i=1n(in)(ji)GiFni

= ∑ j = 0 k { k j } j ! ( n j ) ∑ i = 1 n ( n − j i − j ) G i F n − i =\sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j! {n \choose j}\sum_{i=1}^n {n-j \choose i-j} G_i F_{n-i} =j=0k{kj}j!(jn)i=1n(ijnj)GiFni

f i = G i F n − i f_i=G_i F_{n-i} fi=GiFni ,则

= ∑ j = 0 k { k j } j ! ∑ i = 1 n ( n − j i − j ) f i =\sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j! \sum_{i=1}^n {n-j \choose i-j} f_i =j=0k{kj}j!i=1n(ijnj)fi

考虑后面的那一部分:

P ( j ) = ∑ i = 1 n ( n − j i − j ) f i P(j)=\sum_{i=1}^n {n-j \choose i-j} f_i P(j)=i=1n(ijnj)fi

= ( n − j ) ! ∑ i = 1 n 1 ( n − i + 1 ) ! ( i − j ) ! f i =(n-j)!\sum_{i=1}^n {\frac {1} {(n-i+1)!(i-j)!}} f_i =(nj)!i=1n(ni+1)!(ij)!1fi

A ( i ) = 1 ( n − i + 1 ) ! f i , B ( i ) = 1 i ! A(i)=\frac {1} {(n-i+1)!}f_i,B(i)=\frac {1} {i!} A(i)=(ni+1)!1fi,B(i)=i!1 ,则

P ( j ) = ( n − j ) ! ∑ i = 1 n A i B i − j P(j)=(n-j)! \sum_{i=1}^n A_i B_{i-j} P(j)=(nj)!i=1nAiBij

不难发现这是一个关于差的卷积,于是我们将 A A A 翻转,乘上 B B B 得到 P ′ P' P ,最后再将 P ′ P' P 翻转得到 P P P 即可。

带入原式

∑ j = 0 k { k j } j ! ( n j ) P ( j ) \sum_{j=0}^k \begin{Bmatrix} k \\ j \end{Bmatrix} j! {n \choose j}P(j) j=0k{kj}j!(jn)P(j)

这一部分暴力计算即可。

总时间复杂度 O ( n log ⁡ n + k 2 ) O(n \log n + k^2) O(nlogn+k2)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述似乎缺失了关键信息,通常我会需要了解“P10780 食物”是什么具体的算法竞赛题目,它来自在线平台洛谷(Luogu),以及该题目的大致背景、条件和目标。洛谷食物(Food)可能是某种数据结构或算法问题,比如贪吃蛇、分配任务等。 然而,我可以给你提供一个通用的模板: **[洛谷 P10780 食物 - 题目解析]** 题目名称:P10780 食物(假设是关于食物分配或者饥饿游戏的问题) 链接:[插入实际题目链接] **背景:** 此题通常涉及动态规划或者搜索策略。场景可能是有n个参与者(选手或角色),每个都有特定的食物需求或者优先级,我们需要在有限的食物资源下合理分配。 **分析:** 1. **输入理解**:首先读入n个参与者的信息,包括每个人的需求量或优先级。 2. **状态定义**:可以定义dp[i][j]表示前i个人分配完成后剩余的食物能满足第j个人的最大程度。 3. **状态转移**:递推式可能涉及到选择当前人分配最多食物的版本,然后更新剩余的食物数。 4. **边界条件**:如果剩余食物不足以满足某人的需求,则考虑无法分配给他;如果没有食物,状态值设为0。 5. **优化策略**:可能需要对状态数组进行滚动更新,以减少空间复杂度。 **代码示例(伪代码或部分关键代码片段):** ```python # 假设函数分配_food(demand, remaining)计算分配给一个人后剩余的食物 def solve(foods): dp = [[0 for _ in range(max_demand + 1)] for _ in range(n)] dp = foods[:] # 从第一个到最后一个参与者处理 for i in range(1, n): for j in range(1, max_demand + 1): if dp[i-1][j] > 0: dp[i][j] = max(dp[i][j], dp[i-1][j] - foods[i]) dp[i][j] = max(dp[i][j], distribute_food_to(i, dp[i-1][j])) return dp[n-1][max_demand] ``` **相关问题--:** 1. 这道题是如何运用动态规划的? 2. 如果有优先级限制,应该如何调整代码? 3. 怎样设计搜索策略来解决类似问题?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值