第三章随机过程
基础知识打底:
什么是随机过程:就是所有样本函数的集合 随机过程在任意时刻的值是一个随机的变量,随机过程可以看成是在时间进程中处于不同时刻的随机变量的集合。
随机过程的分布函数:
你不是一个随机变量吗?那你肯定有概率函数,我们取ξ(t)表示一个随机过程,他的分布函数记为F(x1,t1),求导得到概率密度函数。
随机过程的数字特征:
均值方差相关函数自相关函数都回去复习概率论。
-------------------------------------------------------------------------------------------------------------------------------
平稳随机过程:
是什么?一个随机过程的统计特性和时间起点无关,即时间评议不影响其任何统计特性,则称该随机过程是在严格意义下的平稳随机过程,简称严平稳随机过程。
广义平稳需满足两个条件:1均值和时间无关,为常数 2 自相关函数与时间间隔t2-t1有关。
严平稳随机过程一定是广义平稳的,反之不一定成立。
各态历经性
具有各态历经性的过程,其数字特征完全由随机过程中的任意时间的时间平均值来代替。
自相关函数
ξ(t)为平稳随机过程的话,他的自相关函数为 R(τ)=E[ξ(t)ξ