第 3 章 随机过程
文章目录
3.1 随机过程的基本概念
- 随机过程:一类随时间作随机变化的过程,它不能用确切的时间函数描述
- 随机过程的两个角度
- 把随机过程看成对应不同随机试验结果的时间过程的集合
- 样本函数(随机过程的一次实现):测试结果的每一个记录,都是一个确定的时间函数 x i ( t ) x_i(t) xi(t)
- 随机过程:全部样本函数构成的总体 { x 1 ( t ) , x 2 ( t ) , … , x n ( t ) } \{x_1(t),x_2(t),\dots,x_n(t)\} {x1(t),x2(t),…,xn(t)},记作 ξ ( t ) \xi(t) ξ(t)
- 随机过程是所有样本函数的集合
- 随机过程是随机变量概念的延伸
- 随机过程在任意时刻的值是一个随机变量
- 随机过程看作是在时间进程中处于不同时刻的随机变量的集合
- 把随机过程看成对应不同随机试验结果的时间过程的集合
3.1.1 随机过程的分布函数
设 ξ ( t ) \xi(t) ξ(t) 表示一个随机过程,则它在任意时刻 t 1 t_1 t1 的值 ξ ( t 1 ) \xi(t_1) ξ(t1) 是一个随机变量,其统计特性可以用分布函数或概率密度函数来描述。
-
一维分布函数
我们把随机变量 ξ ( t 1 ) \xi(t_1) ξ(t1) 小于或等于某一数值 x 1 x_1 x1 的概率 P [ ξ ( t 1 ) ≤ x 1 ] P[\xi(t_1)≤x_1] P[ξ(t1)≤x1],记作
F 1 ( x 1 , t 1 ) = P [ ξ ( t 1 ) ≤ x 1 ] F_1(x_1,t_1)=P[\xi(t_1)≤x_1] F1(x1,t1)=P[ξ(t1)≤x1]
并称它为随机过程 ξ ( t ) \xi(t) ξ(t) 的一维分布函数 -
一维概率密度函数
如果 F 1 ( x 1 , t 1 ) F_1(x_1,t_1) F1(x1,t1) 对 x 1 x_1 x1 的偏导存在,有
∂ F 1 ( x 1 , t 1 ) ∂ x 1 = f 1 ( x 1 , t 1 ) \frac{\partial F_1(x_1,t_1)}{\partial x_1}=f_1(x_1,t_1) ∂x1∂F1(x1,t1)=f1(x1,t1)
则称 f 1 ( x 1 , t 1 ) f_1(x_1,t_1) f1(x1,t1) 为 ξ ( t ) \xi(t) ξ(t) 的一维概率密度函数 -
二维分布函数
对于任意固定的 t 1 t_1 t1 和 t 2 t_2 t2 时刻,把 ξ ( t 1 ) ≤ x 1 \xi(t_1)≤x_1 ξ(t1)≤x1 和 ξ ( t 2 ) ≤ x 2 \xi(t_2)≤x_2 ξ(t2)≤x2 同时成立的概率
F 2 ( x 1 , x 2 ; t 1 , t 2 ) = P { ξ ( t 1 ) ≤ x 1 , ξ ( t 2 ) ≤ x 2 } F_2(x_1,x_2;t_1,t_2)=P\{\xi(t_1)≤x_1,\xi(t_2)≤x_2\} F2(x1,x2;t1,t2)=P{ξ(t1)≤x1,ξ(t2)≤x2}
称为随机过程 ξ ( t ) \xi(t) ξ(t) 的二维分布函数 -
二维概率密度函数
如果
∂ F 2 ( x 1 , x 2 ; t 1 , t 2 ) ∂ x 1 ⋅ ∂ x 2 = f 2 ( x 1 , x 2 ; t 1 , t 2 ) \frac{\partial F_2(x_1,x_2;t_1,t_2)}{\partial x_1·\partial x_2}=f_2(x_1,x_2;t_1,t_2) ∂x1⋅∂x2∂F2(x1,x2;t1,t2)=f2(x1,x2;t1,t2)
存在,则称 f 2 ( x 1 , x 2 ; t 1 , t 2 ) f_2(x_1,x_2;t_1,t_2) f2(x1,x2;t1,t2) 为 ξ ( t ) \xi(t) ξ(t) 的二维概率密度函数 -
n 维分布函数
任意给定 t 1 , t 2 , … , t n ∈ T t_1,t_2,\dots,t_n\in T t1,t2,…,tn∈T,则 ξ ( t ) \xi(t) ξ(t) 的 n 维分布函数定义为
F n ( x 1 , x 2 , … , x n ; t 1 , t 2 , … , t n ) = P { ξ ( t 1 ) ≤ x 1 , ξ ( t 2 ) ≤ x 2 , … , ξ ( t n ) ≤ x n } F_n(x_1,x_2,\dots,x_n;t_1,t_2,\dots,t_n)\\ =P\{\xi(t_1)≤x_1,\xi(t_2)≤x_2,\dots,\xi(t_n)≤x_n\} Fn(x1,x2,…,xn;t1,t2,…,tn)=P{ξ(t1)≤x1,ξ(t2)≤x2,…,ξ(tn)≤xn} -
n 维概率密度函数
如果
∂ n F n ( x 1 , x 2 , … , x n ; t 1 , t 2 , … , t n ) ∂ x 1 ∂ x 2 … ∂ x n = f n ( x 1 , x 2 , … , x n ; t 1 , t 2 , … , t n ) \frac{\partial^nF_n(x_1,x_2,\dots,x_n;t_1,t_2,\dots,t_n)}{\partial x_1\partial x_2\dots\partial x_n}=f_n(x_1,x_2,\dots,x_n;t_1,t_2,\dots,t_n) ∂x1∂x2…∂xn∂nFn(x1,x2,…,xn;t1,t2,…,tn)=fn(x1,x2,…,xn;t1,t2,…,tn)
存在,则称其为 ξ ( t ) \xi(t) ξ(t) 的 n 维概率密度函数。显然,n 越大,对随机过程统计特性的描述就越充分
3.1.2 随机过程的数字特征
-
均值(数学期望)
-
随机过程 ξ ( t ) \xi(t) ξ(t) 的均值或称数学期望,定义为
E [ ξ ( t ) ] = ∫ − ∞ ∞ x f 1 ( x , t ) d x E[\xi(t)]=\int_{-\infty}^{\infty}xf_1(x,t)dx E[ξ(t)]=∫−∞∞xf1(x,t)dx
这是因为在任意给定时刻 t 1 t_1 t1 的取值 ξ ( t 1 ) \xi(t_1) ξ(t1) 是一个随机变量,其概率密度函数为 f 1 ( x 1 , t 1 ) f_1(x_1,t_1) f1(x1,t1),则 ξ ( t 1 ) \xi(t_1) ξ(t1) 的均值为
E [ ξ ( t 1 ) ] = ∫ − ∞ ∞ x 1 f 1 ( x 1 , t 1 ) d x 1 E[\xi(t_1)]=\int_{-\infty}^{\infty}x_1f_1(x_1,t_1)dx_1 E[ξ(t1)]=∫−∞∞x1f1(x1,t1)dx1
由于 t 1 t_1 t1 是任取的,所以可以把 t 1 t_1 t1 直接写为 t t t, x 1 x_1 x1 改为 x x x ,这时上式就变为随机过程在任意时刻 t 的均值 -
显然, ξ ( t ) \xi(t) ξ(t) 的均值 E [ ξ ( t ) ] E[\xi(t)] E[ξ(t)] 是时间的确定函数,常记为 a ( t ) a(t) a(t),它表示随机过程的 n 个样本函数曲线的摆动中心
-
-
方差
- 随机过程的方差定义为
D [ ξ ( t ) ] = E { [ ξ ( t ) − a ( t ) ] 2 } D[\xi(t)]=E\{[\xi(t)-a(t)]^2\} D[ξ(t)]=E{[ξ(t)−a(t)]2}
D [ ξ ( t ) ] D[\xi(t)] D[ξ(t)] 常记为 σ 2 ( t ) \sigma^2(t) σ2(t)。这里也把任意时刻 t 1 t_1 t1 直接写成了 t t t。因为
D [ ξ ( t ) ] = E [ ξ 2 ( t ) − 2 a ( t ) ξ ( t ) + a 2 ( t ) ] = E [ ξ 2 ( t ) ] − 2 a ( t ) E [ ξ ( t ) ] + a 2 ( t ) = E [ ξ 2 ( t ) ] − a 2 ( t ) = ∫ − ∞ ∞ x 2 f 1 ( x , t ) d x − [ a ( t ) ] 2 D[\xi(t)]=E[\xi ^2(t)-2a(t)\xi(t)+a^2(t)]=E[\xi^2(t)]-2a(t)E[\xi(t)]+a^2(t)\\ =E[\xi^2(t)]-a^2(t)=\int_{-\infty}^{\infty}x^2f_1(x,t)dx-[a(t)]^2 D[ξ(t)]=E[ξ2(t)−2a(t)ξ(t)+a2(t)]=E[ξ2(t)]−2a(t)E[ξ(t)]+a2(t)=E[ξ2(t)]−a2(t)=∫−∞∞x2f1(x,t)dx−[a(t)]2
所以,方差等于均方值与均值平方之差,它表示随机过程在时刻 t t t 相对于均值 a ( t ) a(t) a(t) 的偏离程度
- 随机过程的方差定义为
-
相关函数
-
衡量随机过程在任意两个时刻上获得的随机变量之间的关联程度,常采用相关函数 R ( t 1 , t 2 ) R(t_1,t_2) R(t1,t2) 或协方差函数 B ( t 1 , t 2 ) B(t_1,t_2) B(t1,t2) 。
-
随机过程 ξ ( t ) \xi(t) ξ(t) 的协方差函数
B ( t 1 , t 2 ) = E { [ ξ ( t 1 ) − a ( t 1 ) ] [ ξ ( t 2 ) − a ( t 2 ) ] } = ∫ − ∞ ∞ ∫ − ∞ ∞ [ x 1 − a ( t 1 ) ] [ x 2 − a ( t 2 ) ] f 2 ( x 1 , x 2 ; t 1 , t 2 ) d x 1 d x 2 B(t_1,t_2)=E\{[\xi(t_1)-a(t_1)][\xi(t_2)-a(t_2)]\}\\ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}[x_1-a(t_1)][x_2-a(t_2)]f_2(x_1,x_2;t_1,t_2)dx_1dx_2 B(t1,t2)=E{[ξ(t1)−a(t1)][ξ(t2)−a(t2)]}=∫−∞∞∫−∞∞[x1−a(t1)][x2−a(t2)]f2(x1,x2;t1,t2)dx1dx2
式中: a ( t 1 ) a(t_1) a(t1) 和 a ( t 2 ) a(t_2) a(t2) 分别是在 t 1 t_1 t1 和 t 2 t_2 t2 时刻得到的 ξ ( t ) \xi(t) ξ(t) 的均值; f 2 ( x 1 , x 2 ; t 1 , t 2 ) f_2(x_1,x_2;t_1,t_2) f2(x1,x2;t1,t2) 为 ξ ( t ) \xi(t) ξ(t) 的二维概率密度函数 -
随机过程 ξ ( t ) \xi(t) ξ(t) 的相关函数
R ( t 1 , t 2 ) = E [ ξ ( t 1 ) ξ ( t 2 ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f 2 ( x 1 , x 2 ; t 1 , t 2 ) d x 1 d x 2 R(t_1,t_2)=E[\xi(t_1)\xi(t_2)]=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f_2(x_1,x_2;t_1,t_2)dx_1dx_2 R(t1,t2)=E[ξ(t1)ξ(t2)]=∫−∞∞∫−∞∞x1x2f2(x1,x2;t1,t2)dx1dx2
式中: ξ ( t 1 ) \xi(t_1) ξ(t1) 和 ξ ( t 2 ) \xi(t_2) ξ(t2) 分别是在 t 1 t_1 t1 和 t 2 t_2 t2 时刻观测 ξ ( t ) \xi(t) ξ(t) 得到的随机变量R ( t 1 , t 2 ) R(t_1,t_2) R(t1,t2) 是两个变量 t 1 t_1 t1 与 t 2 t_2 t2 的确定函数
-
B ( t 1 , t 2 ) = R ( t 1 , t 2 ) − a ( t 1 ) a ( t 2 ) B(t_1,t_2)=R(t_1,t_2)-a(t_1)a(t_2) B(t1,t2)=R(t1,t2)−a(t1)a(t2)
-
互相关函数
设 ξ ( t ) \xi(t) ξ(t) 和 η ( t ) \eta(t) η(t) 分别表示两个随机过程,则互相关函数定义为
R ξ η ( t 1 , t 2 ) = E [ ξ ( t 1 ) η ( t 2 ) ] R_{\xi\eta}(t_1,t_2)=E[\xi(t_1)\eta(t_2)] Rξη(t1,t2)=E[ξ(t1)η(t2)]
-
3.2 平稳随机过程
3.2.1 定义
-
严格意义下的平稳随机过程(简称严平稳随机过程)
若一个随机过程 ξ ( t ) \xi(t) ξ(t) 的统计特性与时间起点无关,即时间平移不影响其任何统计特性
-
平稳随机过程 ξ ( t ) \xi(t) ξ(t) 的任意有限维概率密度函数与时间起点无关,也就是说,对于任意的正整数 n n n 和所有实数 Δ \Delta Δ ,有
f n ( x 1 , x 2 , d o t s , x n ; t 1 , t 2 , … , t n ) = f n ( x 1 , x 2 , … , x n ; t 1 + Δ , t 2 + Δ , … , t n + Δ ) f_n(x_1,x_2,dots,x_n;t_1,t_2,\dots,t_n)\\ =f_n(x_1,x_2,\dots,x_n;t_1+\Delta,t_2+\Delta,\dots,t_n+\Delta) fn(x1,x2,dots,xn;t1,t2,…,tn)=fn(x1,x2,…,xn;t1+Δ,t2+Δ,…,tn+Δ)- 它的一维概率密度函数与时间 t 无关,即
f 1 ( x 1 , t 1 ) = f 1 ( x 1 ) f_1(x_1,t_1)=f_1(x_1) f1(x1,t1)=f1(x1)
- 而二维分布函数只与时间间隔 τ = t 2 − t 1 \tau=t_2-t_1 τ=t2−t1 有关,即
f 2 ( x 1 , x 2 ; t 1 , t 2 ) = f 2 ( x 1 , x 2 ; τ ) f_2(x_1,x_2;t_1,t_2)=f_2(x_1,x_2;\tau) f2(x1,x2;t1,t2)=f2(x1,x2;τ)
-
均值
E [ ξ ( t ) ] = ∫ − ∞ ∞ x 1 f 1 ( x 1 ) d x 1 = a E[\xi(t)]=\int_{-\infty}^{\infty}x_1f_1(x_1)dx_1=a E[ξ(t)]=∫−∞∞x1f1(x1)dx1=a -
自相关函数
R ( t 1 , t 2 ) = E [ ξ ( t 1 ) ξ ( t 1 + τ ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ x 1 x 2 f 2 ( x 1 , x 2 ; τ ) d x 1 d x 2 = R ( τ ) R(t_1,t_2)=E[\xi(t_1)\xi(t_1+\tau)]\\ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}x_1x_2f_2(x_1,x_2;\tau)dx_1dx_2\\ =R(\tau) R(t1,t2)=E[ξ(t1)ξ(t1+τ)]=∫−∞∞∫−∞∞x1x2f2(x1,x2;τ)dx1dx2=R(τ) -
平稳随机过程 ξ ( t ) \xi(t) ξ(t) 具有简明的数字特征
- 均值与 t 无关,为常数 a
- 自相关函数只与时间间隔 τ = t 2 − t 1 \tau=t_2-t_1 τ=t2−t1 有关,即 R ( t 1 , t 1 + τ ) = R ( τ ) R(t_1,t_1+\tau)=R(\tau) R(t1,t1+τ)=R(τ)
同时满足以上两个条件的过程定义为广义平稳随机过程
3.2.2 各态历经性
-
定义
假设 x ( t ) x(t) x(t) 是平稳过程 ξ ( t ) \xi(t) ξ(t) 的任意一次实现(样本),由于它是时间的确定函数,可以求得它的时间平均值。
其时间均值和时间相关函数分别定义为
{ a ‾ = x ( t ) ‾ = lim T → ∞ 1 T ∫ − T / 2 T / 2 x ( t ) d t R ( τ ) ‾ = x ( t ) x ( t + τ ) ‾ = lim T → ∞ 1 T ∫ − T / 2 T / 2 x ( t ) x ( t + τ ) d t \begin{cases} \overline{a}=\overline{x(t)}=\displaystyle\lim_{T\to \infty}\frac{1}{T}\int_{-T/2}^{T/2}x(t)dt\\ \overline{R(\tau)}=\overline{x(t)x(t+\tau)}=\displaystyle\lim_{T\to \infty}\frac{1}{T}\int_{-T/2}^{T/2}x(t)x(t+\tau)dt \end{cases} ⎩⎪⎪⎪⎨⎪⎪⎪⎧a=x(t)=T→∞limT1∫−T/2T/2x(t)dtR(τ)=x(t)x(t+τ)=T→∞limT1∫−T/2T/2x(t)x(t+τ)dt
如果平稳过程使
{ a = a ‾ R ( τ ) = R ( τ ) ‾ \begin{cases} a=\overline{a}\\ R(\tau)=\overline{R(\tau)} \end{cases} {a=aR(τ)=R(τ)
成立。也就是说,平稳过程的统计平均值等于它的任一次实现的时间平均值,则称该平稳过程具有各态历经性 -
含义
随机过程中的任一次实现都经历了随机过程的所有可能状态
-
注意:具有各态历经的随机过程一定是平稳过程,反之不一定成立
3.2.3 平稳过程的自相关函数
-
用来描述平稳过程的数字特征和与平稳过程的谱特性的内在联系
-
设 ξ ( t ) \xi(t) ξ(t) 为实平稳随机过程,则它的自相关函数
R ( τ ) = E [ ξ ( t ) ξ ( t + τ ) ] R(\tau)=E[\xi(t)\xi(t+\tau)] R(τ)=E[ξ(t)ξ(t+τ)]
具有如下主要性质:-
R ( 0 ) = E [ ξ 2 ( t ) ] R(0)=E[\xi^2(t)] R(0)=E[ξ2(t)],表示 ξ ( t ) \xi(t) ξ(t) 的平均功率
-
R ( τ ) = R ( − τ ) R(\tau)=R(-\tau) R(τ)=R(−τ),表示 τ \tau τ 的偶函数
-
∣ R ( τ ) ∣ ≤ R ( 0 ) |R(\tau)|≤R(0) ∣R(τ)∣≤R(0),表示 R ( τ ) R(\tau) R(τ) 的上界
即自相关函数 R ( τ ) R(\tau) R(τ) 在 τ = 0 \tau=0 τ=0 有最大值
-
R ( ∞ ) = E 2 [ ξ ( t ) ] = a 2 R(\infty)=E^2[\xi(t)]=a^2 R(∞)=E2[ξ(t)]=a2,表示 ξ ( t ) \xi(t) ξ(t) 的直流功率
-
R ( 0 ) − R ( ∞ ) = σ 2 R(0)-R(\infty)=\sigma^2 R(0)−R(∞)=σ2
σ 2 \sigma^2 σ2 是方差,表示平稳过程 ξ ( t ) \xi(t) ξ(t) 的交流功率。当均值为 0 时,有 R ( 0 ) = σ 2 R(0)=\sigma^2 R(0)=σ2
-
3.2.4 平稳过程的功率谱密度
-
功率谱密度
对于任意的确定功率信号 x ( t ) x(t) x(t),它的功率谱密度定义为
P x ( f ) = lim T → ∞ ∣ X T ( f ) ∣ 2 T P_x(f)=\lim_{T\to\infty}\frac{|X_T(f)|^2}{T} Px(f)=T→∞limT∣XT(f)∣2
式中: X T ( f ) X_T(f) XT(f) 为 f ( t ) f(t) f(t) 的截短函数 x T ( t ) x_T(t) xT(t) 所对应的频谱函数过程的功率谱密度看作是对所有样本的功率谱的统计平均,即
P ξ ( f ) = E [ P x ( f ) ] = lim T → ∞ E ∣ X T ( f ) ∣ 2 T P_\xi(f)=E[P_x(f)]=\lim_{T\to\infty}\frac{E|X_T(f)|^2}{T} Pξ(f)=E[Px(f)]=T→∞limTE∣XT(f)∣2 -
平稳过程的功率谱密度 P ξ ( f ) P_\xi(f) Pξ(f) 与其自相关函数 R ( τ ) R(\tau) R(τ) 也是一对傅里叶变换关系,即
{ P ξ ( ω ) = ∫ − ∞ ∞ R ( τ ) e − j ω τ d τ R ( τ ) = 1 2 π ∫ − ∞ ∞ P ξ ( ω ) e j ω τ d ω \begin{cases} P_\xi(\omega)=\int_{-\infty}^{\infty}R(\tau)e^{-j\omega\tau}d\tau\\ R(\tau)=\frac{1}{2\pi}\int_{-\infty}^{\infty}P_{\xi}(\omega)e^{j\omega\tau}d\omega \end{cases} {Pξ(ω)=∫−∞∞R(τ)e−jωτdτR(τ)=2π1∫−∞∞Pξ(ω)ejωτdω
或
{ P ξ ( f ) = ∫ − ∞ ∞ R ( τ ) e − j ω τ d τ R ( τ ) = ∫ − ∞ ∞ P ξ ( f ) e j ω τ d f \begin{cases} P_\xi(f)=\int_{-\infty}^{\infty}R(\tau)e^{-j\omega\tau}d\tau\\ R(\tau)=\int_{-\infty}^{\infty}P_\xi(f)e^{j\omega\tau}df \end{cases} {Pξ(f)=∫−∞∞R(τ)e−jωτdτR(τ)=∫−∞∞Pξ(f)ejωτdf
简记为
R ( τ ) ⇔ P ξ ( f ) R(\tau)\Leftrightarrow P_\xi(f) R(τ)⇔Pξ(f)
以上关系称为维纳—辛钦定理,它在平稳随机过程的理论和应用中是一个非常重要的工具,它是联系频域和时域两种分析方法的基本关系式 -
在维纳—辛钦关系的基础上,我们可以得到以下结论:
-
对功率谱密度进行积分,可以得到平稳过程的平均功率:
R ( 0 ) = ∫ − ∞ ∞ P ξ ( f ) d f R(0)=\int_{-\infty}^{\infty}P_\xi(f)df R(0)=∫−∞∞Pξ(f)df -
各态历经过程的任一样本函数的功率谱密度等于过程的功率谱密度。也就是说,每一样本函数的谱特性都能很好地表现整个过程的谱特性
-
功率谱密度 P ξ ( f ) P_\xi(f) Pξ(f) 具有非负性和实偶性,即有
P ξ ( f ) ≥ 0 P_\xi(f)≥0 Pξ(f)≥0
和
P ξ ( − f ) = P ξ ( f ) P_\xi(-f)=P_\xi(f) Pξ(−f)=Pξ(f)
这与 R ( τ ) R(\tau) R(τ) 的实偶性相对应
-
3.3 高斯随机过程
3.3.1 定义
-
正态过程(高斯过程)
如果随机过程 ξ ( t ) \xi(t) ξ(t) 的任意 n 维(n = 1, 2, …)分布均服从正态分布,则称它为正态过程或高斯过程
其 n 维正态概率密度函数表示如下:
f n ( x 1 , x 2 , … , x n ; t 1 , t 2 , … , t n ) = 1 ( 2 π ) n / 2 σ 1 σ 2 … σ n ∣ B ∣ 1 / 2 e x p [ − 1 2 ∣ B ∣ ∑ j = 1 n ∑ k = 1 n ∣ B ∣ j k ( x j − a j σ j ) ( x k − a k σ k ) ] f_n(x_1,x_2,\dots,x_n;t_1,t_2,\dots,t_n)\\ =\frac{1}{(2\pi)^{n/2}\sigma_1\sigma_2\dots\sigma_n|B|^{1/2}}exp[\frac{-1}{2|B|}\sum_{j=1}^{n}\sum_{k=1}^n|B|_{jk}(\frac{x_j-a_j}{\sigma_j})(\frac{x_k-a_k}{\sigma_k})] fn(x1,x2,…,xn;t1,t2,…,tn)=(2π)n/2σ1σ2…σn∣B∣1/21exp[2∣B∣−1j=1∑nk=1∑n∣B∣jk(σjxj−aj)(σkxk−ak)]
式中: a k = E [ ξ ( t k ) ] , σ k 2 = E [ ξ ( t k ) − a k ] 2 ; ∣ B ∣ a_k=E[\xi(t_k)],\sigma_{k}^2=E[\xi(t_k)-a_k]^2;|B| ak=E[ξ(tk)],σk2=E[ξ(tk)−ak]2;∣B∣ 为归一化协方差矩阵的行列式,即
∣ B ∣ = ∣ 1 b 12 ⋯ b 1 n b 21 1 … b 2 n ⋮ ⋮ ⋯ ⋮ b n 1 b n 2 ⋯ 1 ∣ |B|=\begin{vmatrix} 1&b_{12}&\cdots&b_{1n}\\ b_{21}&1&\dots&b_{2n}\\ \vdots&\vdots&\cdots&\vdots\\ b_{n1}&b_{n2}&\cdots&1 \end{vmatrix} ∣B∣=∣∣∣∣∣∣∣∣∣1b21⋮bn1b121⋮bn2⋯…⋯⋯b1nb2n⋮1∣∣∣∣∣∣∣∣∣
∣ B ∣ j k |B|_{jk} ∣B∣jk 为行列式 ∣ B ∣ |B| ∣B∣ 中元素 b j k b_{jk} bjk 的代数余因子; b j k b_{jk} bjk 为归一化协方差函数,即
b j k = E { [ ξ ( t j ) − a j ] [ ξ ( t k ) − a k ] } σ j σ k b_{jk}=\frac{E\{[\xi(t_j)-a_j][\xi(t_k)-a_k]\}}{\sigma_j\sigma_k} bjk=σjσkE{[ξ(tj)−aj][ξ(tk)−ak]}
3.3.2 重要性质
-
高斯过程的 n 维分布只依赖各个随机变量的均值、方差和归一化协方差。因此,对于高斯过程,只需要研究它的数字特征就可以了
-
广义平稳的高斯过程也是严平稳的。因为,若高斯过程是广义平稳的,即其均值与时间无关,协方差函数只与时间间隔有关,而与时间起点无关,则它的 n 维分布也与时间起点无关,故它也是严平稳的。所以,高斯过程若是广义平稳的,则也严平稳
-
如果高斯过程在不同时刻的取值是不相关的,即对所有 j ≠ k 有 b j k = 0 b_{jk}=0 bjk=0,这时
f n ( x 1 , x 2 , … , x n ; t 1 , t 2 , … , t n ) = ∏ k = 1 n 1 2 π σ k e x p [ − ( x k − a k ) 2 2 σ k 2 ] = f ( x 1 , t 1 ) ⋅ f ( x 2 , t 2 ) ⋅ … ⋅ f ( x n , t n ) f_n(x_1,x_2,\dots,x_n;t_1,t_2,\dots,t_n)=\prod_{k=1}^n\frac{1}{\sqrt{2\pi}\sigma_k}exp[-\frac{(x_k-a_k)^2}{2\sigma_k^2}]\\ =f(x_1,t_1)·f(x_2,t_2)·\dots·f(x_n,t_n) fn(x1,x2,…,xn;t1,t2,…,tn)=k=1∏n2πσk1exp[−2σk2(xk−ak)2]=f(x1,t1)⋅f(x2,t2)⋅…⋅f(xn,tn)
这表明,如果高斯过程在不同时刻的取值是不相关的,那么它们也是统计独立的 -
高斯过程经过线性变换后生成的过程仍是高斯过程
3.3.3 高斯随机变量
-
高斯随机变量:高斯过程在任一时刻上的取值是一个正态分布的随机变量
其一维概率密度函数为
f ( x ) = 1 2 π σ exp ( − ( x − a ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}\exp(-\frac{(x-a)^2}{2\sigma^2}) f(x)=2πσ1exp(−2σ2(x−a)2)
式中:a 和 σ 2 \sigma^2 σ2 分别为高斯随机变量的均值和方差 -
正态分布的概率密度 f(x) 有以下特性:
-
f(x) 对称于 x = a 这条直线,即
f ( a + x ) = f ( a − x ) f(a+x)=f(a-x) f(a+x)=f(a−x) -
∫ − ∞ ∞ f ( x ) d x = 1 \int_{-\infty}^{\infty}f(x)dx=1 ∫−∞∞f(x)dx=1
及
∫ − ∞ a f ( x ) d x = ∫ a ∞ f ( x ) d x = 1 2 \int_{-\infty}^af(x)dx=\int_{a}^{\infty}f(x)dx=\frac{1}{2} ∫−∞af(x)dx=∫a∞f(x)dx=21 -
a 表示分布中心, σ \sigma σ 称为标准偏差,表示集中程度,f(x) 图形将随着 σ \sigma σ 的减小而变高和变窄。当 a = 0 , σ = 1 a=0,\sigma=1 a=0,σ=1 时,称为标准化的正态分布,即
f ( x ) = 1 2 π exp ( − x 2 2 ) f(x)=\frac{1}{\sqrt{2\pi}}\exp(-\frac{x^2}{2}) f(x)=2π1exp(−2x2)
-
-
正态分布函数
F ( x ) = P ( ξ ≤ x ) = ∫ − ∞ x 1 2 π σ exp [ − ( z − a ) 2 2 σ 2 ] d z F(x)=P(\xi≤x)=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}\sigma}\exp[-\frac{(z-a)^2}{2\sigma^2}]dz F(x)=P(ξ≤x)=∫−∞x2πσ1exp[−2σ2(z−a)2]dz
3.4 平稳随机过程通过线性系统
假设输入过程
ξ
i
(
t
)
\xi_i(t)
ξi(t) 是平稳的,其均值为 a,自相关函数为
R
i
(
τ
)
R_i(\tau)
Ri(τ),功率谱密度为
P
i
(
ω
)
P_i(\omega)
Pi(ω) 的基础上,求输出过程
ξ
o
(
t
)
\xi_o(t)
ξo(t) 的统计特性,即它的均值、自相关函数、功率谱以及概率分布
ξ
o
(
t
)
=
∫
−
∞
∞
h
(
τ
)
ξ
i
(
t
−
τ
)
d
τ
\xi_o(t)=\int_{-\infty}^\infty h(\tau)\xi_i(t-\tau)d\tau
ξo(t)=∫−∞∞h(τ)ξi(t−τ)dτ
-
输出过程 ξ o ( t ) \xi_o(t) ξo(t) 的均值
E [ ξ o ( t ) ] = E [ ∫ − ∞ ∞ h ( τ ) ξ i ( t − τ ) d τ ] = ∫ − ∞ ∞ h ( τ ) E [ ξ i ( t − τ ) ] d τ E[\xi_o(t)]=E[\int_{-\infty}^{\infty}h(\tau)\xi_i(t-\tau)d\tau]=\int_{-\infty}^{\infty}h(\tau)E[\xi_i(t-\tau)]d\tau E[ξo(t)]=E[∫−∞∞h(τ)ξi(t−τ)dτ]=∫−∞∞h(τ)E[ξi(t−τ)]dτ
设输入过程是平稳的,则有 E [ ξ i ( t − τ ) ] = E [ ξ i ( t ) ] = a E[\xi_i(t-\tau)]=E[\xi_i(t)]=a E[ξi(t−τ)]=E[ξi(t)]=a(常数),所以
E [ ξ o ( t ) ] = a ⋅ ∫ − ∞ ∞ h ( τ ) d τ = a ⋅ H ( 0 ) E[\xi_o(t)]=a·\int_{-\infty}^{\infty}h(\tau)d\tau=a·H(0) E[ξo(t)]=a⋅∫−∞∞h(τ)dτ=a⋅H(0)
式中:H(0) 为线性系统在 f = 0 处的频率响应,即直流增益。因此输出过程的均值 E [ ξ o ( t ) ] E[\xi_o(t)] E[ξo(t)] 是一个常数 -
输出过程 ξ o ( t ) \xi_o(t) ξo(t) 的自相关函数
输出过程的自相关函数为
R o ( t 1 , t 1 + τ ) = E [ ξ o ( t 1 ) ξ o ( t 1 + τ ) ] = E [ ∫ − ∞ ∞ h ( α ) ξ i ( t 1 − α ) d α ∫ − ∞ ∞ h ( β ) ξ i ( t 1 + τ − β ) d β ] = ∫ − ∞ ∞ ∫ − ∞ ∞ h ( α ) h ( β ) E [ ξ i ( t 1 − α ) ξ i ( t 1 + τ − β ) ] d α d β R_o(t_1,t_1+\tau)=E[\xi_o(t_1)\xi_o(t_1+\tau)]\\ =E[\int_{-\infty}^{\infty}h(\alpha)\xi_i(t_1-\alpha)d\alpha\int_{-\infty}^{\infty}h(\beta)\xi_i(t_1+\tau-\beta)d\beta]\\ =\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}h(\alpha)h(\beta)E[\xi_i(t_1-\alpha)\xi_i(t_1+\tau-\beta)]d\alpha d\beta Ro(t1,t1+τ)=E[ξo(t1)ξo(t1+τ)]=E[∫−∞∞h(α)ξi(t1−α)dα∫−∞∞h(β)ξi(t1+τ−β)dβ]=∫−∞∞∫−∞∞h(α)h(β)E[ξi(t1−α)ξi(t1+τ−β)]dαdβ
根据输入过程的平稳性,有
E [ ξ i ( t 1 − α ) ξ i ( t 1 + τ − β ) ] = R i ( τ + α − β ) E[\xi_i(t_1-\alpha)\xi_i(t_1+\tau-\beta)]=R_i(\tau+\alpha-\beta) E[ξi(t1−α)ξi(t1+τ−β)]=Ri(τ+α−β)
于是
R o ( t 1 , t 1 + τ ) = ∫ − ∞ ∞ ∫ ∞ ∞ h ( α ) h ( β ) R i ( τ + α − β ) d α d β = R o ( τ ) R_o(t_1,t_1+\tau)=\int_{-\infty}^{\infty}\int_{\infty}^{\infty}h(\alpha)h(\beta)R_i(\tau+\alpha-\beta)d\alpha d\beta=R_o(\tau) Ro(t1,t1+τ)=∫−∞∞∫∞∞h(α)h(β)Ri(τ+α−β)dαdβ=Ro(τ)
输出过程的自相关函数仅仅是时间间隔 τ \tau τ 的函数若线性系统的输入过程是平稳的,那么输出过程也是平稳的
-
输出过程 ξ o ( t ) \xi_o(t) ξo(t) 的功率谱密度
P o ( f ) = H ∗ ( f ) ⋅ H ( f ) ⋅ P i ( f ) = ∣ H ( f ) ∣ 2 P i ( f ) P_o(f)=H^*(f)·H(f)·P_i(f)=|H(f)|^2P_i(f) Po(f)=H∗(f)⋅H(f)⋅Pi(f)=∣H(f)∣2Pi(f)
输出过程的功率谱密度是输入过程的功率谱密度乘以系统频率响应模值的平方 -
输出过程 ξ o ( t ) \xi_o(t) ξo(t) 的概率分布
高斯过程经线性变换后的过程仍为高斯过程
3.5 窄带随机过程
-
窄带随机过程
若随机过程 ξ ( t ) \xi(t) ξ(t) 的谱密度集中在中心频率 f c f_c fc 附近相对窄的频带范围 Δ f \Delta f Δf 内,即满足 Δ f ≪ f c \Delta f\ll f_c Δf≪fc 条件,且 f c f_c fc 远离零频率,则称该 ξ ( t ) \xi(t) ξ(t) 为窄带随机过程
-
实际中,大多数通信系统都是窄带带通型的,通过窄带系统的信号或噪声必然是窄带随机过程
-
典型的窄带随机过程的频谱密度和波形
-
窄带随机过程的一个样本的波形如同一个包络和相应随机缓变的正弦波。因此,窄带随机过程 ξ ( t ) \xi(t) ξ(t) 可表示为
ξ ( t ) = a ξ ( t ) c o s [ ω c t + φ ξ ( t ) ] a ξ ( t ) ⩾ 0 \xi(t)=a_\xi(t)cos[\omega_ct+\varphi_\xi(t)]\ \ \ a_\xi(t)\geqslant0 ξ(t)=aξ(t)cos[ωct+φξ(t)] aξ(t)⩾0
式中: a ξ ( t ) a_\xi(t) aξ(t) 及 φ ξ ( t ) \varphi_\xi(t) φξ(t) 分别为窄带随机过程 ξ ( t ) \xi(t) ξ(t) 的随机包络和随机相位; ω c \omega_c ωc 为正弦波的中心角频率。显然, a ξ ( t ) a_\xi(t) aξ(t) 及 φ ξ ( t ) \varphi_\xi(t) φξ(t) 的变化相对于载波 cos ω c t \cos\omega_ct cosωct 的变化要缓慢得多进行三角函数展开,可以改写为
ξ ( t ) = ξ c ( t ) cos ω c t − ξ s ( t ) sin ω c t \xi(t)=\xi_c(t)\cos\omega_ct-\xi_s(t)\sin\omega_ct ξ(t)=ξc(t)cosωct−ξs(t)sinωct
其中
ξ c ( t ) = a ξ ( t ) cos φ ξ ( t ) ξ s ( t ) = a ξ ( t ) sin φ ξ ( t ) \xi_c(t)=a_\xi(t)\cos\varphi_\xi(t)\\ \xi_s(t)=a_\xi(t)\sin\varphi_\xi(t) ξc(t)=aξ(t)cosφξ(t)ξs(t)=aξ(t)sinφξ(t)
这里的 ξ c ( t ) \xi_c(t) ξc(t) 及 ξ s ( t ) \xi_s(t) ξs(t) 分别称为 ξ ( t ) \xi(t) ξ(t) 的同相分量和正交分量。假设 ξ ( t ) \xi(t) ξ(t) 是一个均值为 0,方差为 σ ξ 2 \sigma_\xi^2 σξ2 的平稳高斯窄带过程
3.5.1 ξ c ( t ) \xi_c(t) ξc(t) 和 ξ s ( t ) \xi_s(t) ξs(t) 的统计特性
- 若窄带过程 ξ ( t ) \xi(t) ξ(t) 是平稳的,则 ξ c ( t ) \xi_c(t) ξc(t) 与 ξ s ( t ) \xi_s(t) ξs(t) 也必然是平稳的
- 同相分量 ξ c ( t ) \xi_c(t) ξc(t) 和正交分量 ξ s ( t ) \xi_s(t) ξs(t) 具有相同的自相关函数
- 一个均值为零的窄带平稳高斯过程 ξ ( t ) \xi(t) ξ(t),它的同相分量 ξ c ( t ) \xi_c(t) ξc(t) 和正交分量 ξ s ( t ) \xi_s(t) ξs(t) 同样是平稳高斯过程,而且均值为零,方差也相同。此外,在同一时刻上得到的 ξ c \xi_c ξc 和 ξ s \xi_s ξs 是互不相关的或统计独立的
3.5.2 a ξ ( t ) a_\xi(t) aξ(t) 和 φ ξ ( t ) \varphi_\xi(t) φξ(t) 的统计特性
-
f ( a ξ ) = a ξ σ ξ 2 exp [ − a ξ 2 2 σ ξ 2 ] a ξ ⩾ 0 f(a_\xi)=\frac{a_\xi}{\sigma_\xi^2}\exp[-\frac{a_\xi^2}{2\sigma_\xi^2}]\ \ \ a_\xi\geqslant0 f(aξ)=σξ2aξexp[−2σξ2aξ2] aξ⩾0
-
f ( φ ξ ) = 1 2 π 0 ⩽ φ ξ ⩽ 2 π f(\varphi_\xi)=\frac{1}{2\pi}\ \ \ 0\leqslant\varphi_\xi\leqslant2\pi f(φξ)=2π1 0⩽φξ⩽2π
-
一个均值为零、方差为 σ ξ 2 \sigma_\xi^2 σξ2 的窄带平稳高斯过程 ξ ( t ) \xi(t) ξ(t),其包络 a ξ ( t ) a_\xi(t) aξ(t) 的一维分布是瑞利分布,相位 φ ξ ( t ) \varphi_\xi(t) φξ(t) 的一维分布是均匀分布,并且就一维分布而言, a ξ ( t ) a_\xi(t) aξ(t) 与 φ ξ ( t ) \varphi_\xi(t) φξ(t) 是统计独立的,即
f ( a ξ , φ ξ ) = f ( a ξ ) ⋅ f ( φ ξ ) f(a_\xi,\varphi_\xi)=f(a_\xi)·f(\varphi_\xi) f(aξ,φξ)=f(aξ)⋅f(φξ)
3.6 正弦波加窄带高斯噪声
-
设正弦波加窄带高斯噪声的混合信号为
r ( t ) = A cos ( ω c t + θ ) + n ( t ) r(t)=A\cos(\omega_ct+\theta)+n(t) r(t)=Acos(ωct+θ)+n(t)
式中: n ( t ) = n c ( t ) cos ω c t − n s ( t ) sin ω c t n(t)=n_c(t)\cos\omega_ct-n_s(t)\sin\omega_ct n(t)=nc(t)cosωct−ns(t)sinωct ,为窄带高斯噪声,其均值为零,方差为 σ n 2 \sigma_n^2 σn2; θ \theta θ 为正弦波的随机相位,在 ( 0 , 2 π ) (0,2\pi) (0,2π) 上均匀分布;振幅 A 和角频率 ω c \omega_c ωc 均假定为确知量于是
r ( t ) = [ A cos θ + n c ( t ) ] cos ω c t − [ A sin θ + n s ( t ) ] sin ω c t = z c ( t ) cos ω c t − z s ( t ) sin ω c t = z ( t ) cos [ ω c t + φ ( t ) ] r(t)=[A\cos\theta+n_c(t)]\cos\omega_ct-[A\sin\theta+n_s(t)]\sin\omega_ct\\ =z_c(t)\cos\omega_ct-z_s(t)\sin\omega_ct\\ =z(t)\cos{[\omega_ct+\varphi(t)]} r(t)=[Acosθ+nc(t)]cosωct−[Asinθ+ns(t)]sinωct=zc(t)cosωct−zs(t)sinωct=z(t)cos[ωct+φ(t)]其中
z c ( t ) = A cos θ + n c ( t ) z s ( t ) = A sin θ + n s ( t ) z_c(t)=A\cos\theta+n_c(t)\\ z_s(t)=A\sin\theta+n_s(t) zc(t)=Acosθ+nc(t)zs(t)=Asinθ+ns(t)
r(t) 的包络和相位分别为
z ( t ) = z c 2 ( t ) + z s 2 ( t ) z ⩾ 0 φ ( t ) = arctan z s ( t ) z c ( t ) 0 ⩽ φ ⩽ 2 π z(t)=\sqrt{z_c^2(t)+z_s^2(t)}\ \ \ z\geqslant0\\ \varphi(t)=\arctan\frac{z_s(t)}{z_c(t)}\ \ \ 0\leqslant\varphi\leqslant2\pi z(t)=zc2(t)+zs2(t) z⩾0φ(t)=arctanzc(t)zs(t) 0⩽φ⩽2π -
可以证明,正弦波加窄带高斯过程的包络的概率密度函数为
f ( z ) = z σ 2 exp [ − 1 2 σ 2 ( z 2 + A 2 ) ] I 0 ( A z σ 2 ) z ⩾ 0 f(z)=\frac{z}{\sigma^2}\exp[-\frac{1}{2\sigma^2}(z^2+A^2)]I_0(\frac{Az}{\sigma^2})\ \ \ z\geqslant0 f(z)=σ2zexp[−2σ21(z2+A2)]I0(σ2Az) z⩾0
该概率密度函数称为广义瑞利分布,又称Rice(莱斯)密度函数。式中为零阶修正贝塞尔函数。-
当 A=0 时,只有噪声 n(t),即为瑞利分布
-
当 A 远大于 n(t) 时,即大信噪比时
f ( z ) ≈ 1 2 π σ exp [ − ( z − A ) 2 2 σ 2 ] z ⩾ 0 f(z)\approx\frac{1}{\sqrt{2\pi}\sigma}\exp[-\frac{(z-A)^2}{2\sigma^2}]\ \ \ z\geqslant0 f(z)≈2πσ1exp[−2σ2(z−A)2] z⩾0
为高斯分布。r(t) 的相位的概率密度函数为
f ( φ ) = ∫ 0 2 π f ( φ , θ ) d θ = ∫ 0 2 π f ( φ / θ ) f ( θ ) d θ f(\varphi)=\int_0^{2\pi}f(\varphi,\theta)d\theta=\int_0^{2\pi}f(\varphi/\theta)f(\theta)d\theta f(φ)=∫02πf(φ,θ)dθ=∫02πf(φ/θ)f(θ)dθ
当信噪比很大时,相位分布集中于正弦信号本身的相位附近;在信噪比很小时,接近于均匀分布。
-
3.7 高斯白噪声和带限白噪声
-
白噪声 n(t)
-
定义:功率谱密度在所有频率上均为常数的噪声,即
P n ( f ) = n 0 2 ( − ∞ < f < + ∞ ) — — 双 边 功 率 谱 密 度 P_n(f)=\frac{n_0}{2}\ \ \ (-\infty<f<+\infty)\ \ \ ——双边功率谱密度 Pn(f)=2n0 (−∞<f<+∞) ——双边功率谱密度
或
P n ( f ) = n 0 ( 0 < f < + ∞ ) — — 单 边 功 率 谱 密 度 P_n(f)=n_0\ \ \ (0<f<+\infty)\ \ \ ——单边功率谱密度 Pn(f)=n0 (0<f<+∞) ——单边功率谱密度
式中 n 0 n_0 n0 ——正常数 -
白噪声的自相关函数:对双边功率谱密度取傅里叶反变换,得到相关函数:
R ( τ ) = n 0 2 δ ( τ ) R(\tau)=\frac{n_0}{2}\delta(\tau) R(τ)=2n0δ(τ) -
白噪声和其自相关函数的曲线:
-
白噪声的功率
由于白噪声的带宽无限,其平均功率为无穷大,即
R ( 0 ) = ∫ − ∞ ∞ n 0 2 d f = ∞ R(0)=\int_{-\infty}^{\infty}\frac{n_0}{2}df=\infty R(0)=∫−∞∞2n0df=∞
或
R ( 0 ) = n 0 2 δ ( 0 ) = ∞ R(0)=\frac{n_0}{2}\delta(0)=\infty R(0)=2n0δ(0)=∞- 因此,真正”白“的噪声是不存在的,它只是构造的一种理想化的噪声形式。
- 实际中,只要噪声的功率谱均匀分布的频率范围远远大于通信系统的工作频带,我们就可以把它视为白噪声。
- 如果白噪声取值的概率分布服从高斯分布,则称之为高斯白噪声
-
-
低通白噪声
-
定义:如果白噪声通过理想矩形的低通滤波器或理想低通信道,则输出的噪声称为低通白噪声
-
功率谱密度
P n ( f ) = { n 0 2 ∣ f ∣ ⩽ f H 0 其 它 P_n(f)=\begin{cases} \frac{n_0}{2}\ \ \ |f|\leqslant f_H\\ 0\ \ \ \ \ 其它 \end{cases} Pn(f)={2n0 ∣f∣⩽fH0 其它- 由上式可见,白噪声的功率谱密度被限制在 ∣ f ∣ ⩽ f H |f|\leqslant f_H ∣f∣⩽fH 内,通常把这样的噪声也称为带限白噪声
-
功率谱密度和自相关函数曲线
-
-
带通白噪声
-
定义:如果白噪声通过理想矩形的带通滤波器或理想带通信道,则其输出的噪声称为带通白噪声
-
功率谱密度
设理想带通滤波器的传输特性为
H ( f ) = { 1 f c − B 2 ⩽ ∣ f ∣ ⩽ f c + B 2 0 其 他 f H(f)=\begin{cases} 1\ \ \ f_c-\frac{B}{2}\leqslant|f|\leqslant f_c+\frac{B}{2}\\ 0\ \ \ 其他f \end{cases} H(f)={1 fc−2B⩽∣f∣⩽fc+2B0 其他f
式中
f c — — 中 心 频 率 , B — — 通 带 宽 度 f_c——中心频率,B——通带宽度 fc——中心频率,B——通带宽度
则其输出噪声的功率谱密度为
P n ( f ) = { n 0 2 f c − B 2 ⩽ ∣ f ∣ ⩽ f c + B 2 0 其 它 f P_n(f)=\begin{cases} \frac{n_0}{2}\ \ \ f_c-\frac{B}{2}\leqslant|f|\leqslant f_c+\frac{B}{2}\\ 0\ \ \ \ \ 其它f \end{cases} Pn(f)={2n0 fc−2B⩽∣f∣⩽fc+2B0 其它f -
带通白噪声的功率谱和自相关函数曲线
-
-
窄带高斯白噪声
-
通常,带通滤波器的 B ≪ f c B\ll f_c B≪fc ,因此称窄带滤波器,相应地把带通白高斯噪声称为窄带高斯白噪声
-
平均功率
N = n 0 B N=n_0B N=n0B
-