题目传送门: 点击打开链接
第15届浙江省程序设计竞赛 (算是一个金牌界线题,不算很难,赛场上没怎么研究这道题,赛后晚上再被窝里一想,卧槽简单题)
这题先根据大小关系建图,然后用拓扑排序维护一下O(n)的效率,如何建图?
假设当前序列的第i个数值是2,则他一定比前面最小的那为1(第q个)的来的大,比前面最小的那个2(第k个)来的小,那么拿i向q连边,k向i连边,最多2*n条边。还需要把部分边标记一下,因为有些边代表的是严格大于,有些边代表的是大于等于,这两种情况的处理方式是不一样的。这题数据卡的很紧,及时完全O(n)的做法最后还是被卡了常数,所以加了一个输入挂,970ms跑过去了,不加输入挂大概要跑(1100ms)吧?
#include<bits/stdc++.h>
using namespace std;
#define rep(i,j,k) for(int i=j;i<=k;i++)
typedef long long ll;
int Min[100005];
int in[100005];
vector<int> G[100005],G1[100005];
int ans[100005];
queue<int> q;
unordered_map<ll,bool> mm;
int Max(int a,int b){
return a>b?a:b;
}
int Minx(int a,int b){
return a<b?a:b;
}
inline void scan_d(int &ret)
{
char c;
ret = 0;
while ((c = getchar()) < '0' || c > '9');
while (c >= '0' && c <= '9')
{
ret = ret * 10 + (c - '0'), c = getchar();
}
}
int main(){
int T,a,n,l,r;
scan_d(T);
while(T--){
scan_d(n);
rep(i,1,n) Min[i]=0;
rep(i,1,n) in[i]=0;
rep(i,1,n) G[i].clear(),G1[i].clear();
mm.clear();
while(!q.empty()) q.pop();
rep(i,1,n){
scan_d(a);
if(Min[a]==0){
Min[a]=i;
if(a!=1) G[i].push_back(Min[a-1]),G1[Min[a-1]].push_back(i);
}else{
G[Min[a]].push_back(i),mm[200000LL*Min[a]+i]=1,G1[i].push_back(Min[a]);
Min[a]=i;
if(a!=1) G[i].push_back(Min[a-1]),G1[Min[a-1]].push_back(i);
}
}
rep(i,1,n) scan_d(l),scan_d(r),ans[i]=r;
rep(i,1,n){
for(int j=0;j<G[i].size();j++){
in[G[i][j]]++;
}
}
rep(i,1,n) if(in[i]==0) q.push(i);
while(!q.empty()){
int tmp=q.front();
q.pop();
for(int j=0;j<G1[tmp].size();j++){
if(mm[200000LL*G1[tmp][j]+tmp]) ans[tmp]=Minx(ans[tmp],ans[G1[tmp][j]]);
else ans[tmp]=Minx(ans[tmp],ans[G1[tmp][j]]-1);
}
for(int j=0;j<G[tmp].size();j++){
--in[G[tmp][j]];
if(in[G[tmp][j]]==0) q.push(G[tmp][j]);
}
}
rep(i,1,n) printf("%d%c",ans[i],i==n?'\n':' ');
}
return 0;
}