ZOJ 4028 LIS

题目传送门:    点击打开链接


    第15届浙江省程序设计竞赛 (算是一个金牌界线题,不算很难,赛场上没怎么研究这道题,赛后晚上再被窝里一想,卧槽简单题)

    这题先根据大小关系建图,然后用拓扑排序维护一下O(n)的效率,如何建图?

    假设当前序列的第i个数值是2,则他一定比前面最小的那为1(第q个)的来的大,比前面最小的那个2(第k个)来的小,那么拿i向q连边,k向i连边,最多2*n条边。还需要把部分边标记一下,因为有些边代表的是严格大于,有些边代表的是大于等于,这两种情况的处理方式是不一样的。这题数据卡的很紧,及时完全O(n)的做法最后还是被卡了常数,所以加了一个输入挂,970ms跑过去了,不加输入挂大概要跑(1100ms)吧?

    

#include<bits/stdc++.h>
using namespace std;
#define rep(i,j,k) for(int i=j;i<=k;i++)
typedef long long ll;

int Min[100005];
int in[100005];
vector<int> G[100005],G1[100005];
int ans[100005];
queue<int> q;
unordered_map<ll,bool> mm;

int Max(int a,int b){
    return a>b?a:b;
}
int Minx(int a,int b){
    return a<b?a:b;
}

inline void scan_d(int &ret)
{
    char c;
    ret = 0;
    while ((c = getchar()) < '0' || c > '9');
    while (c >= '0' && c <= '9')
    {
        ret = ret * 10 + (c - '0'), c = getchar();
    }
}

int main(){
    int T,a,n,l,r;
    scan_d(T);
    while(T--){
        scan_d(n);
        rep(i,1,n) Min[i]=0;
        rep(i,1,n) in[i]=0;
        rep(i,1,n) G[i].clear(),G1[i].clear();
        mm.clear();
        while(!q.empty()) q.pop();
        rep(i,1,n){
            scan_d(a);
            if(Min[a]==0){
                Min[a]=i;
                if(a!=1) G[i].push_back(Min[a-1]),G1[Min[a-1]].push_back(i);
            }else{
                G[Min[a]].push_back(i),mm[200000LL*Min[a]+i]=1,G1[i].push_back(Min[a]);
                Min[a]=i;
                if(a!=1) G[i].push_back(Min[a-1]),G1[Min[a-1]].push_back(i);
            }
        }
        rep(i,1,n) scan_d(l),scan_d(r),ans[i]=r;
        rep(i,1,n){
            for(int j=0;j<G[i].size();j++){
                in[G[i][j]]++;
            }
        }
        rep(i,1,n) if(in[i]==0) q.push(i);
        while(!q.empty()){
            int tmp=q.front();
            q.pop();
            for(int j=0;j<G1[tmp].size();j++){
                if(mm[200000LL*G1[tmp][j]+tmp]) ans[tmp]=Minx(ans[tmp],ans[G1[tmp][j]]);
                else ans[tmp]=Minx(ans[tmp],ans[G1[tmp][j]]-1);
            }
            for(int j=0;j<G[tmp].size();j++){
                --in[G[tmp][j]];
                if(in[G[tmp][j]]==0) q.push(G[tmp][j]);
            }
        }
        rep(i,1,n) printf("%d%c",ans[i],i==n?'\n':' ');
    }
    return 0;
}

    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值