CNN神经网络文本分类----招聘信息分类

本文介绍了如何使用CNN神经网络对招聘信息进行分类。首先回顾了文本预处理的重要性,接着详细阐述了实验流程,包括数据加载、分词、关键词提取、建立token字典、 Embedding层处理、CNN模型训练、模型评估与预测。最后提供了代码实践和训练结果分析,鼓励读者尝试修改代码以适应不同的文本分类任务。
摘要由CSDN通过智能技术生成

xue

tu

    

640?wx_fmt=png

    Hello,又是一个分享的日子,上期博主介绍了BP神经网络文本分类----招聘信息分类,并介绍了文本在进入神经网络前的预处理工作。今天博主给大家分享CNN神经网络对招聘数据的分类,也同样要对文本进行预处理,所以还没了解文本预处理的小伙伴,一定要去看看博主的上期推文。

    当然啦,博主也在往期的推文中也介绍了CNN卷积神经网络的原理,还不熟悉CNN卷积神经网络原理的小伙伴可以翻一下什么?卷积层会变胖?人工智能之光---CNN卷积神经网络(原理篇),这里博主就不进行过多的赘述了。

    下面就开始我们新的实验部分。

实验

实验环境                                                                                          

640?wx_fmt=gif

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值