论文阅读:PAIE交互式prompt事件抽取

PAIE是一种新的事件角色抽取方法,结合了QA的高效性和prompt的任务注入,解决了Cloze任务的变长答案问题和生成式方法的效率问题。通过encoder-decoder架构,PAIE能一次性抽取所有argument,并用模板与原文交互。实验显示PAIE相比现有SOTA有显著提升。
摘要由CSDN通过智能技术生成

Prompt for Extraction? PAIE: Prompting Argument Interaction for Event Argument Extraction

发布于ACL2022

论文链接:https://aclanthology.org/2022.acl-long.466/

GitHub链接:https://github.com/mayubo2333/PAIE.

1. 主要内容

        事件抽取问题可分为事件检测(Detectoin)和事件角色抽取(Argument Extraction)。其中事件倦色抽取问题是一个更难的问题。一段文本中可能有多个事件,一个事件中有多种语义角色,还可能有多个Argument对应同一个role。以如下事件模板为例

Participant communicated with Participant about Topic at Place.

        这个事件中,有两个参与者,一个话题和一个地点。主流的prompt有两个方向,一个基于Cloze任务的,但是不太好处理变长的答案,而且在transformer

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值