146 LRU Cache

题目链接:https://leetcode.com/problems/lru-cache/

题目:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.

set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

解题思路:
1、用一个hash表来维护结点的位置关系,也就是hash表的key就是资源本身的key,value是资源的结点(包含key和value的信息)。
2、把结点维护成一个双向链表构成的队列,这样子如果我们要访问某一个结点,那么可以通过hash表和key来找到结点,从而取到相应的value。而当我们想要删除或者插入结点时,我们还是通过hash表找到结点,然后通过双向链表和队列的尾结点把自己删除同时插入到队尾。
3、通过hash表访问结点我们可以认为是O(1)的操作(假设hash函数足够好),然后双向链表的插入删除操作也是O(1)的操作。如此我们便实现了用O(1)时间来完成所有LRU cache的操作。空间上就是对于每一个资源有一个hash表的的项以及一个对应的结点(包含前后指针和资源的<key, value>)。
参考链接:http://blog.csdn.net/linhuanmars/article/details/21310633

注意:
1、链表为空时,插入节点
2、删除的节点在头,在尾或者在中间
3、插入的节点若键已存在,则替换其值,再将其从链表中删除后插入链表末尾

public class LRUCache {

    class Node {
        int key;
        int value;
        Node next;
        Node pre;
        public Node(int k, int v) {
            this.key = k;
            this.value = v;
        }
    }

    private HashMap<Integer, Node> map;
    private int capacity;
    private Node head, tail;

    public LRUCache(int capacity) {
        this.map = new HashMap<Integer, Node>();
        this.capacity = capacity;
        head = null;
        tail = null;
    }

    public int get(int key) {
        Node node = map.get(key);
        if(node == null)
            return -1;
        if(node != tail) {
            if(node == head)
                head = head.next;
            else {
                node.pre.next = node.next;
                node.next.pre = node.pre;
            }
            tail.next = node;
            node.pre = tail;
            node.next = null;
            tail = node;
        }
        return node.value;
    }

    public void set(int key, int value) {
        Node node = map.get(key);
        if(node != null) {
            node.value = value;
            if(node != tail) {
                if(node == head)
                    head = head.next;
                else {
                    node.pre.next = node.next;
                    node.next.pre = node.pre;
                }
                tail.next = node;
                node.pre = tail;
                node.next = null;
                tail = node;
            }
        } else {
            Node newNode = new Node(key, value);
            if(this.capacity == 0) {
                Node temp = head;
                head = head.next;
                map.remove(temp.key);
                this.capacity ++;
            }
            if(head == null && tail == null)
                head = newNode;
            else {
                tail.next = newNode;
                newNode.pre = tail;
                newNode.next = null;
            }
            tail = newNode;
            map.put(key, newNode);
            this.capacity --;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值