堆排序、快速排序

本文介绍了堆排序和快速排序两种常见的排序算法。堆排序基于完全二叉树,分为大顶堆和小顶堆,核心操作包括构建初始堆和维护堆的性质。快速排序采用分治思想,平均时间复杂度为O(nlogn)。实测表明,在大多数情况下快速排序的性能优于堆排序,但堆排序在寻找最大或最小元素时有优势,并能用于构建优先队列。
摘要由CSDN通过智能技术生成

排序算法之堆排序

     堆排序是基于完全二叉树的排序算法,即二叉树的除最后一层外每一层都达到容纳结点的最大值。最后一层从左至右依次排列。堆排序引入了另一种算法设计技巧,使用一种我们称为“堆”的数据结构来进行信息管理,不仅用在堆排序中,而且它也可以构造一种有效的优先队列。

     堆是一个数组,它可以被看成一个类似于完全二叉树的数据结构。即如果我们认为数组下标为 “i” 的位置的元素为根节点,则它的左孩子为 “2 * i” 、右孩子为 “2 * i +1”.如果我们判断结点 ”i“ 的父节点是谁,则“ i / 2” 就是结点“i”的父结点。这里我们计算时采用整型并且默认向下取整。

    堆可以分为两种,一种是“大顶堆”,即根节点必须保证大于左右孩子。另一种是“小顶堆”,即根节点必须保证小于左右孩子。

    这里我们介绍的是堆排序,首先堆排序依照我的理解来看分三块:

            1.堆排序的核心模块:即heapSort函数。

                    (1),构建初始堆

                    (2),倒序循环,从迭代元素=(数组长度 - 1)开始循环直到迭代元素=2执行完毕后跳出循环

                            (2.1)交换第一位 和 数组有效长度最后一位的元素

                            (2.2)从第一位 元素开始向下维护堆的性质

           2.构建初始堆:即createMaxHeap

                   描述:从二叉树最后一个根节点向前遍历,维护出一个具备堆的性质的二叉树。

           3.维护堆的性质:即maintainHeapSort

                  (1.)记录当前结点index的左右孩子的下标,如果左孩子的下标在有效范围内,并且左孩子大于当前结点index, 那么使用largest变量记录下左孩子的下标。否则用largest记录当前结点index的下标

                (2.)如果右孩子的下标在有效范围内,并且右孩子大于当前结点index,那么使用largest变量记录下右孩子的下标。

                (3.)如果 largest !=当前结点的下标,那么交换array[index]和array[largest]。并以largest所记录的孩子的下标为参数调用maintainHeapSort

图解:

源代码:

/**
     * 堆排序入口,需要传入一个长度大于等于2的数组
     * 如果小于2就别排序了,没啥用也
     * @pa
好的,我可以为您解答这个问题。 首先,堆排序快速排序、归并排序和计数排序都是常见的排序算法,它们的实现方式各不相同。下面分别介绍它们的C++实现。 1. 堆排序(Heap Sort) 堆排序是一种选择排序,它利用堆的性质进行排序。堆是一个完全二叉树,其中每个节点的值都大于或等于其子节点的值(最大堆),或者小于或等于其子节点的值(最小堆)。在堆排序中,我们将待排序数组构建成一个最大堆,然后将堆顶元素(即最大值)与数组最后一个元素交换,然后重新调整堆,重复执行此操作,直到整个数组有序。 下面是堆排序的C++实现: ```c++ void heapify(int arr[], int n, int i) { int largest = i; // 初始化最大值为根节点 int l = 2 * i + 1; // 左子节点索引 int r = 2 * i + 2; // 右子节点索引 // 如果左子节点比最大值大,则更新最大值索引 if (l < n && arr[l] > arr[largest]) largest = l; // 如果右子节点比最大值大,则更新最大值索引 if (r < n && arr[r] > arr[largest]) largest = r; // 如果最大值不是根节点,则交换根节点和最大值,然后递归调整堆 if (largest != i) { swap(arr[i], arr[largest]); heapify(arr, n, largest); } } void heapSort(int arr[], int n) { // 构建最大堆 for (int i = n / 2 - 1; i >= 0; i--) heapify(arr, n, i); // 依次取出堆顶元素,放到数组末尾,并重新调整堆 for (int i = n - 1; i >= 0; i--) { swap(arr[0], arr[i]); heapify(arr, i, 0); } } ``` 2. 快速排序(Quick Sort) 快速排序是一种分治排序,它利用分治的思想将大问题分解成小问题,然后递归地解决小问题。在快速排序中,我们选择一个枢轴元素(一般选择第一个元素),将数组分为两个部分,左边部分的元素均小于枢轴元素,右边部分的元素均大于枢轴元素。然后分别对左右两部分递归执行此操作,直到整个数组有序。 下面是快速排序的C++实现: ```c++ int partition(int arr[], int low, int high) { int pivot = arr[low]; // 枢轴元素 int i = low, j = high; while (i < j) { // 从右往左找第一个小于枢轴元素的位置 while (i < j && arr[j] >= pivot) j--; // 从左往右找第一个大于枢轴元素的位置 while (i < j && arr[i] <= pivot) i++; // 交换左右两个元素 if (i < j) swap(arr[i], arr[j]); } // 将枢轴元素放到正确的位置上 arr[low] = arr[i]; arr[i] = pivot; return i; } void quickSort(int arr[], int low, int high) { if (low < high) { int pivot = partition(arr, low, high); quickSort(arr, low, pivot - 1); quickSort(arr, pivot + 1, high); } } ``` 3. 归并排序(Merge Sort) 归并排序也是一种分治排序,它将待排序数组分成两部分,分别排序,然后合并成一个有序数组。在归并排序中,我们先将数组分为两半,分别对左半部分和右半部分递归执行归并排序,然后将两个有序子数组合并成一个有序数组。 下面是归并排序的C++实现: ```c++ void merge(int arr[], int l, int m, int r) { int n1 = m - l + 1; int n2 = r - m; // 创建临时数组 int L[n1], R[n2]; // 将左半部分复制到临时数组 L for (int i = 0; i < n1; i++) L[i] = arr[l + i]; // 将右半部分复制到临时数组 R for (int i = 0; i < n2; i++) R[i] = arr[m + 1 + i]; // 合并左右两个有序子数组 int i = 0, j = 0, k = l; while (i < n1 && j < n2) { if (L[i] <= R[j]) { arr[k] = L[i]; i++; } else { arr[k] = R[j]; j++; } k++; } // 将剩余的元素复制到数组中 while (i < n1) { arr[k] = L[i]; i++; k++; } while (j < n2) { arr[k] = R[j]; j++; k++; } } void mergeSort(int arr[], int l, int r) { if (l < r) { int m = l + (r - l) / 2; mergeSort(arr, l, m); mergeSort(arr, m + 1, r); merge(arr, l, m, r); } } ``` 4. 计数排序(Counting Sort) 计数排序是一种非比较排序,它利用元素出现的次数来确定每个元素在有序数组中的位置。在计数排序中,我们先统计每个元素出现的次数,然后计算每个元素在有序数组中的位置,最后将元素放到正确的位置上。 下面是计数排序的C++实现: ```c++ void countingSort(int arr[], int n) { int max_val = 0; for (int i = 0; i < n; i++) { if (arr[i] > max_val) max_val = arr[i]; } // 创建计数数组 int count[max_val + 1] = {0}; // 统计每个元素出现的次数 for (int i = 0; i < n; i++) count[arr[i]]++; // 计算每个元素在有序数组中的位置 for (int i = 1; i <= max_val; i++) count[i] += count[i - 1]; // 将元素放到正确的位置上 int output[n]; for (int i = n - 1; i >= 0; i--) { output[count[arr[i]] - 1] = arr[i]; count[arr[i]]--; } // 将有序数组复制到原数组中 for (int i = 0; i < n; i++) arr[i] = output[i]; } ``` 以上就是堆排序快速排序、归并排序和计数排序的C++实现,希望能对您有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值