Llamaindex RAG实践

任务描述: LlamaIndex 构建自己的 RAG 知识库,寻找一个问题 A 在使用 LlamaIndex 之前InternLM2-Chat-1.8B模型不会回答,借助 LlamaIndex 后 InternLM2-Chat-1.8B 模型具备回答 A 的能力,截图保存。


LlamaIndex + InternLM2 RAG 实践指南

引言

在自然语言处理(NLP)领域,Retrieval-Augmented Generation (RAG) 是一种结合了信息检索与生成的技术,可以通过查询外部知识库来增强模型的回答能力。传统的生成模型,如InternLM2-Chat-1.8B,可能因为缺乏训练数据的覆盖而无法回答某些问题。但通过引入LlamaIndex构建RAG架构,我们可以有效地扩展模型的知识范围,使其能够回答更多的问题。

本指南旨在帮助读者通过LlamaIndex构建一个RAG知识库,并验证这一知识库如何增强InternLM2-Chat-1.8B模型的回答能力。

环境准备

首先,我们需要配置合适的环境,以便能够顺利地进行LlamaIndex和InternLM2的集成。

1. 创建并激活Conda虚拟环境

为了确保环境的独立性和兼容性,建议在一个新的Conda虚拟环境中进行操作。通过以下命令创建并激活环境:

conda create -n llamaindex python=3.10
conda activate llamaindex

这里选择Python 3.10版本是因为它与当前的许多深度学习框架兼容性较好。

2. 安装PyTorch和相关依赖

PyTorch是一个深度学习框架,支持大规模的训练与推理。我们将其与CUDA结合使用,以利用GPU加速模型的训练和推理过程:

conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia
pip install einops protobuf

这里特别指定了版本,以确保在后续步骤中能够顺利运行,并避免由于依赖版本不匹配而导致的错误。

3. 安装LlamaIndex及其相关组件

LlamaIndex是一个非常灵活的库,可以帮助我们轻松构建知识库并与Hugging Face的LLM(Large Language Model)进行集成:

pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0

在这里,我们同时安装了与Hugging Face平台集成的组件,以便可以无缝地使用从Hugging Face Hub下载的模型。

4. 创建工作目录并下载必要的模型

为了便于管理文件和模型,我们先创建一个工作目录,然后下载需要使用的模型:

mkdir -p ~/llamaindex_demo/model
cd ~/llamaindex_demo

我们将模型存储在这个目录下,以确保文件路径的统一性和易于管理。

5. 创建并运行下载脚本

为了下载我们需要的模型,可以创建一个简单的Python脚本 download_hf.py 来自动化这个过程:

import os

os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com'
os.system('huggingface-cli download --resume-download sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 --local-dir /root/model/sentence-transformer')

这个脚本利用Hugging Face CLI来下载模型,并将其保存在指定目录中。我们使用了一个镜像站点来加速下载过程。

6. 下载并配置NLTK资源

NLTK(Natural Language Toolkit)是一个非常有用的工具,包含大量的自然语言处理相关的数据和工具。为了确保我们的文本处理过程顺利进行,需要下载一些常用的资源:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git --branch gh-pages
cd nltk_data
mv packages/* ./
cd tokenizers && unzip punkt.zip
cd ../taggers && unzip averaged_perceptron_tagger.zip

这些资源将帮助我们处理文本的分词、词性标注等操作,使得后续的模型处理更加精准。

LlamaIndex与HuggingFaceLLM集成

在完成了环境的准备之后,我们可以开始将LlamaIndex与InternLM2-Chat-1.8B模型进行集成,以验证模型在没有知识库支持的情况下的能力。

1. 创建 llamaindex_internlm.py 文件

这个Python脚本将展示如何使用Hugging Face的LLM接口来加载InternLM2-Chat-1.8B模型,并让它回答一个简单的问题:

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)

这个脚本简单地加载了模型,并发送一个问题给模型进行回答。这里的xtuner是我们希望模型回答的问题,但由于模型的知识库可能并不包含相关信息,回答可能并不理想。

2. 运行脚本并观察输出

通过运行上述脚本,我们可以得到模型的初步回答:

python llamaindex_internlm.py

在这里插入图片描述

结果可能会显示模型无法准确回答这个问题,因为它依赖于内部已经训练好的知识库,而xtuner并未包含在内。

LlamaIndex RAG实现

为了增强模型的回答能力,我们可以通过LlamaIndex构建一个RAG架构,利用外部知识库来帮助模型回答问题。

1. 安装额外的依赖

RAG的核心在于信息检索和嵌入模型的使用,因此我们需要安装一些额外的依赖来支持这些功能:

pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor

这些依赖将帮助我们从文档中提取有意义的嵌入,并利用它们进行信息检索。

2. 准备知识库

为了让模型能够回答关于xtuner的问题,我们需要提供相关的文档作为知识库:

mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./
cd ..

我们将xtuner的相关文档克隆到本地,并将其放置在工作目录中,以便后续加载。

3. 创建 llamaindex_RAG.py 文件

这个脚本将展示如何利用LlamaIndex创建一个RAG查询引擎,并让模型通过检索知识库来回答问题:

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

# 初始化嵌入模型
embed_model = HuggingFaceEmbedding(
    model_name="/root/model/sentence-transformer"
)
Settings.embed_model = embed_model

# 初始化语言模型
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
Settings.llm = llm

# 加载文档并创建索引
documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)

# 创建查询引擎并执行查询
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

4. 运行脚本并观察结果

通过运行上述脚本,我们可以看到模型通过检索知识库中的文档,生成了一个更为准确的回答:

python llamaindex_RAG.py

在这里插入图片描述

结果显示,结合RAG后,模型已经能够准确回答xtuner是什么,体现了RAG架构在增强模型回答能力上的显著作用。

结论

通过本指南,我们展示了如何使用LlamaIndex与InternLM2-Chat-1.8B模型构建一个简单的RAG架构,并验证了这一架构在增强模型回答能力方面的有效性。这种方法不仅扩展了模型的知识范围,还提高了其在特定领域的问答能力,为NLP模型的进一步发展提供了新的思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值