山东大学软件学院暑期实训——项目记录(一)

本文详细描述了基于多模态数据的脑卒中病人健康评估与预测系统中,如何在MATLAB中处理NIRS数据,包括光密度到血氧浓度的转换,滤波、小波去噪,以及特征提取(如统计特征和小波包能量)的过程,还涉及了皮尔逊相关系数和邻接矩阵的构建。
摘要由CSDN通过智能技术生成

本项目继续做基于多模态数据的脑卒中病人健康评估与预测系统
下面是对上一篇中数据处理流程的补充

1.NIRS到.mat

现在我们采集的数据都是NIRS文件,要在MATLAB中处理直接将后缀改为.mat即可。
在这里插入图片描述

2.将光密度转换为血氧浓度数据

将采集到的原始光强数据转换为氧合血红蛋白(Oxy-Hb),脱氧血红蛋白(Deoxy-Hb)和总的血红蛋白(Total-Hb),转换过程主要使用朗伯-比尔定律。

使用homer2中的两个函数hmrIntensity2ODhmrOD2Conc,前者将原始数据转换为光密度,后者将光密度转换为血氧浓度。

dod = hmrIntensity2OD(d); 
dc_all = hmrOD2Conc(dod,SD,[6 6 6]);

转化后得到上述三个浓度指标,一般使用第一个

Matrix=dc_all(:,1,:);
Matrix=squeeze(Matrix);
3.滤波

使用MATLAB的工具包Butterworth Filters中的带阻滤波函数bandstop_butterworth()

4.小波去噪

选择wden

5.处理后的数据保存下来,进行特征提取
(1)统计特征提取
(2) 基于小波包分解的能量特征提取
6.使用皮尔逊相关系数计算两个通道之间的相关度
7.设置阈值,构建图的邻接矩阵
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值