libfm in python

该博客介绍了如何在Python中利用libfm库进行分类任务,详细阐述了具体的应用示例,参考链接指向了一个GitHub资源。
摘要由CSDN通过智能技术生成

https://github.com/coreylynch/pyFM

一个   python   实现 分解   [1]。使用 自适应 正则化 作为 学习 方法 适应 正规化 训练 模型 参数 自动 使用 随机 梯度 下降 详情 请参阅   [2]   libfm.org : "分解   (FM)   允许 通过 模拟 大多数 分解 模型 特征 工程 泛型 方法 种方式 分解 " 相结合 特征 工程 概论 凭借 优势 分解 模型 估计 分类 变量 之间 相互作用

[1] Steffen Rendle (2012): Factorization Machines with libFM, in ACM Trans. Intell. Syst. Technol., 3(3), May.
[2] Steffen Rendle: Learning recommender systems with adaptive regularization. WSDM 2012: 133-142

依赖:numpy 和 sklearn

训练过程

使用此方法最简单的方式是——将你的训练数据描述成标准的python字典格式,即the dict elements map each instance's categorical and real valued variables to its values.然后使用sklearn的sklearn DictVectorizer  将字典转换为使用one-hot编码过的设计矩阵。
例如:
from pyfm import pylibfm
from sklearn.feature_extraction import DictVectorizer
import numpy as np
train = [
    {
  "user": "1", "item": &
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值