Leetcode 458. 可怜的小猪

Leetcode 458. 可怜的小猪 (思维或者信息熵)

链接:https://leetcode-cn.com/problems/poor-pigs
题意
有 buckets 桶液体,其中 正好 有一桶含有毒药,其余装的都是水。它们从外观看起来都一样。为了弄清楚哪只水桶含有毒药,你可以喂一些猪喝,通过观察猪是否会死进行判断。不幸的是,你只有 minutesToTest 分钟时间来确定哪桶液体是有毒的。

喂猪的规则如下:

选择若干活猪进行喂养
可以允许小猪同时饮用任意数量的桶中的水,并且该过程不需要时间。
小猪喝完水后,必须有 minutesToDie 分钟的冷却时间。在这段时间里,你只能观察,而不允许继续喂猪。
过了 minutesToDie 分钟后,所有喝到毒药的猪都会死去,其他所有猪都会活下来。
重复这一过程,直到时间用完。
给你桶的数目 buckets ,minutesToDie 和 minutesToTest ,返回在规定时间内判断哪个桶有毒所需的 最小 猪数。

示例 1:

输入:buckets = 1000, minutesToDie = 15, minutesToTest = 60
输出:5
示例 2:

输入:buckets = 4, minutesToDie = 15, minutesToTest = 15
输出:2
示例 3:

输入:buckets = 4, minutesToDie = 15, minutesToTest = 30
输出:2

提示:

1 <= buckets <= 1000
1 <= minutesToDie <= minutesToTest <= 100

算法

方法1:思维

先考虑二维的情况,假如有25个罐子

15分钟死30分钟死45分钟死60分钟死60分钟活
15分钟死01234
30分钟死56789
45分钟死1011121314
60分钟死1516171819
60分钟活2021222324

第一只去寻找列坐标,第二只去寻找行坐标。
第一只喝下在0分钟喝下第一列的水(会在15分钟后得到结果),15分钟喝下第二列的水,30分钟喝下第三列的水,45分钟喝下第四列的水,进行k=4轮,总共有看k+ 1 = 5种状态,那便可以确定一列。

那么同理,利用第二只猪可以确定行数。
那么同理,如果有三只猪,就可以确定三维的情况了。

( ( k + 1 ) r e s ) > = n = > r e s > = log ⁡ 2 n log ⁡ 2 ( k + 1 ) ((k + 1) ^ {res}) >= n => res >= \frac{\log _{2} n}{\log _{2}(k+1)} ((k+1)res)>=n=>res>=log2(k+1)log2n

方法2:香农熵

利用香农熵,代表信息量的大小,我们可以计算明确熵值,公式为:
H ( X ) = − ∑ x P ( x ) log ⁡ 2 [ P ( x ) ] H(X)=-\sum_{x} P(x) \log _{2}[P(x)] H(X)=xP(x)log2[P(x)]
其中 P ( x ) P(x) P(x) 代表随机事件 x x x 的发生概率。
对于本题,记随机事件 A A A n n n 桶水中哪一个桶有问题,概率为 1 n \frac{1}{n} n1

n n n桶水中有一桶水有问题香农熵(信息量)H(A):
H ( A ) = − ∑ i  = 1 n 1 n log ⁡ 2 1 n = − ( log ⁡ 2 1 n ) H(A) = -\sum_{\text {i }=1}^{n} \frac{1}{n} \log _{2} \frac{1}{n} = -\left(\log _{2} \frac{1}{n}\right) H(A)==1nn1log2n1=(log2n1)

记随机事件 B B B 为在测试轮数为 k k k 时,所有实验对象的最终状 态,每个实验对象的状态共有 k + 1 k+1 k+1 种,即共有 C = ( k + 1 ) m C=(k+1)^{m} C=(k+1)m 种最终结果,可近似看做等概率 1 C \frac{1}{C} C1
我们需要求得在满足 H ( A ) < = H ( B ) H(A)<=H(B) H(A)<=H(B) 前提下的最小 m m m 值。 代入公式可得:
− ( log ⁡ 2 1 n ) < = − ∑ result  = 0 ( k + 1 ) m 1 ( k + 1 ) m log ⁡ 2 1 ( k + 1 ) m = m log ⁡ 2 ( k + 1 ) -\left(\log _{2} \frac{1}{n}\right)<=-\sum_{\text {result }=0}^{(k+1)^{m}} \frac{1}{(k+1)^{m}} \log _{2} \frac{1}{(k+1)^{m}}=m \log _{2}(k+1) (log2n1)<=result =0(k+1)m(k+1)m1log2(k+1)m1=mlog2(k+1)
移项化简得:
log ⁡ 2 n log ⁡ 2 ( k + 1 ) < = m \frac{\log _{2} n}{\log _{2}(k+1)}<=m log2(k+1)log2n<=m

class Solution {
public:
    int poorPigs(int buckets, int minutesToDie, int minutesToTest) {
        return ceil(log(buckets) / log(minutesToTest / minutesToDie + 1));
    }
};
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值