VAE—Resnet18-pytorch

最近复现一篇论文,其中用到Resnet18作为encoder和residual decoder的VAE结构,写篇博客暂时记录一下。
第一次写类似程序,记录一下几个自己掉的坑:
1、优化器直接用了SGD,导致第二个batch就发生了loss爆炸,换成了adam问题就解决了(猜测是没有设置动量的原因,梯度摆动过大)。

代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
from torchvision import transforms, utils
from torch.utils.data import Dataset, DataLoader
import torchvision.models as models
import os
from PIL import Image
import numpy as np
from torchvision.datasets import ImageFolder
import torchvision

#用上采样加卷积代替了反卷积
class ResizeConv2d(nn.Module):

    def __init__(self, in_channels, out_channels, kernel_size, scale_factor, mode='nearest'):
        super().__init__()
        self.scale_factor = scale_factor
        self.mode = mode
        self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=1)

    def forward(self, x):
        x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode)
        x = self.conv(x)
        return x


class ResNet18Enc(nn.Module):
    def __init__(self, z_dim=32):
        super(ResNet18Enc, self).__init__()
        self.z_dim = z_dim
        self.ResNet18 = models.resnet18(pretrained=True)
        self.num_feature = self.ResNet18.fc.in_features
        self.ResNet18.fc = nn.Linear(self.num_feature, 2 * self.z_dim)

    def forward(self, x):
        x = self.ResNet18(x)
        mu = x[:, :self.z_dim]
        logvar = x[:, self.z_dim:]
        return mu, logvar


class BasicBlockDec(nn.Module):

    def 
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值