[LeetCode]Interleaving String

本文介绍了一种使用动态规划解决字符串交织问题的方法。该方法通过构建二维DP数组来判断字符串s3是否能由s1和s2交织而成。文章详细解释了DP状态转移方程,并给出了完整的C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given s1s2s3, find whether s3 is formed by the interleaving of s1 and s2.

For example,
Given:
s1 = "aabcc",
s2 = "dbbca",

When s3 = "aadbbcbcac", return true.

When s3 = "aadbbbaccc", return false.

运用动态规划解,Dp[i][j]表示s1的i位和s2的j位是否交织。

特别注意交织时候有重复解的情况,如果s3[k]与s1[i]相等,那么Dp 寻找Dp[i-1][j]。

class Solution {
public:
    bool isInterleave(string s1, string s2, string s3) {
        int m = s1.length();
        int n = s2.length();
        if(m+n!=s3.length())
            return false;
        vector<vector<bool>> Dp(m+1,vector<bool>(n+1,false));
        Dp[0][0] = true;
        for(int i=0; i<m; ++i){
            if(s1[i]==s3[i])
                Dp[i+1][0] = Dp[i][0];
        }
        for(int j=0; j<n; ++j){
            if(s2[j]==s3[j])
                Dp[0][j+1] = Dp[0][j];
        } //动态规划初始解
        for(int i=1; i<=m; ++i){
            for(int j=1; j<=n; ++j){
                int k = i+j;
                if(s3[k-1]==s2[j-1]){
                    Dp[i][j] = Dp[i][j]||Dp[i][j-1];
                }
                if(s3[k-1]==s1[i-1]){
                    Dp[i][j] = Dp[i-1][j]||Dp[i][j];
                }//避免重复解
            }
        }
        return Dp[m][n];
    }
};


内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值