Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get
and set
.
get(key)
- Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value)
- Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
用unordered_map 哈希来实现O(1)的查询。
用双向队列来实现O(1)的头尾删除和指定点的删除。
写起来有些复杂,队列越前面表示最近用的多。每当set一个新节点时要放倒队列前面,同时超过容量时删除队尾的元素。所以双向队列最好。
class LRUCache{
public:
struct Cache{
int key;
int value;
Cache(int a,int b):key(a),value(b){}
};
LRUCache(int capacity) {
this->capacity = capacity;
}
int get(int key) {
if(cacheMap.find(key)==cacheMap.end())
return -1; //没有找到节点
//找到节点最近使用放在最前面
else{
int ret = cacheMap[key]->value;
cacheList.erase(cacheMap[key]);
cacheList.push_front(Cache(key,ret));
cacheMap[key]= cacheList.begin();
return ret;
}
}
void set(int key, int value) { //赋值要更新,如果不是赋值是插入要插到最前面,同时注意不要超过容量
if(cacheMap.find(key)==cacheMap.end()){ //插入
if(cacheList.size()!=capacity){ //没有超过容量,记得同步更新Map
cacheList.push_front(Cache(key,value));
cacheMap[key] = cacheList.begin();
}
else{ //超出容量
cacheList.push_front(Cache(key,value));
cacheMap.erase(cacheList.back().key);
cacheList.pop_back();
cacheMap[key] = cacheList.begin();
}
}
else{ //更新值
cacheList.erase(cacheMap[key]); //删除当前节点,赋值更新要插入到最前面
cacheList.push_front(Cache(key,value));
cacheMap[key] = cacheList.begin();
}
}
private:
list<Cache> cacheList; //前插,删除时间也为O(1)
unordered_map<int, list<Cache>::iterator> cacheMap; //保证查找速度为O(1),map一个int和cache迭代器
int capacity;
};