MQ的应用场景

目录

1.MQ

1.1定义

1.2 MQ有哪些

1.3不同MQ特点

2.MQ的应用场景

2.1异步处理

场景说明:

1.串行方式:

2.并行方式:

3.消息队列: 广播模型

2.2应用解耦

场景:

2.3流量削峰

场景:

作用:


1.MQ

1.1定义

MQ (Message Quene):翻译为消息队列,通过典型的生产者消费者模型,生产者不断向消息队列中生产消息,消费者不断的从队列中获取消息。因为消息的生产和消费都是异步的,而且只关心消息的发送和接收,没有业务逻辑的侵入,轻松的实现系统间解耦。别名为消息中间件 通过利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来进行分布式系统的集成。

1.2 MQ有哪些

当今市面上有很多主流的消息中间件,如老牌的ActiveMQ、RabbitMQ, 炙手可热的Kafka,阿里巴巴自主开发RocketMQ等。

1.3不同MQ特点

1.ActiveMQ
ActiveMQ是Apache出品,最流行的,能力强劲的开源消息总线。它是一个完全支持JMS规范的的消息中间件。丰富的API,多种集群架构模式让ActiveMQ在业界成为老牌的消息中间件,在中小型企业颇受欢迎!性能没有其他好。吞吐量不高。

2.Kafka
Kafka是LinkedIn开源的分布式发布-订阅消息系统,目前归属于Apache顶级项目。Kafka主要特点是基于Pu11的模式来处理消息消费,追求高吞吐量,一开始的目的就是用于日志收集和传输。0.8版本开始支持复制,不支持事务,对消息的重复、丢失、错误没有严格要求,适合产生大量数据的互联网服务的数据收集业务。 用于大数据实时处理

3.RocketMQ
RocketMQ是阿里开源的消息中间件,它是纯Java开发,具有高吞吐量、高可用性、适合大规模分布式系统应用的特点。RocketMQ思路起源于Kafka,但并不是Kafka的-个Copy,它对消息的可靠传输及事务性做了优化,目前在阿里集团被广泛应用于交易、充值、流计算、消息推送、日志流式处理、bing1og分发等场景。
用于双十一,但是阿里云买的RocketMQ才支持事务。

4.RabbitMQ
RabbitMQ是使用Erlang语言开发的开源消息队列系统(所以处理并发时,性能非常不错),基于AMQP协议来实现。AMQP的主要特征是面向消息、队列、路由(包括点对点和发布/订阅)、可靠性、安全。AMQP协议更多用在企业系统内对数据一致性、 稳定性和可靠性要求很高的场景(这四种中最高的,不会丢失任何数据),对性能和吞吐量的要求还在其次(输于Kafka)。
与spring框架做无缝对接

 总结:RabbitMQ比Kafka可靠, Kafka更适合IO高吞吐的处理,一般应用在大数据日志处理或对实时性(少量延迟), 可靠性 (少量丢数据) 要求稍低的场景使用,比如ELK日志收集。

2.MQ的应用场景

2.1异步处理

场景说明:

用户注册后,需要发注册邮件和注册短信,传统的做法有两种1 .串行的方式2 .并行的方式

1.串行方式:

将注册信息写入数据库后,发送注册邮件再发送注册短信,以上三个任务全部完成后才返回给客户端。

这有一个问题是,邮件,短信并不是必须的,它只是一个通知,而这种做法让客户端等待没有必要等待的东西.

2.并行方式:

将注册信息写入数据库后,发送邮件的同时,发送短信,以上三个任务完成后,返回给客户端,并行的方式能提高处理的时间。

3.消息队列: 广播模型

假设三个业务节点分别使用50ms,串行方式使用时间150ms,并行使用时间100ms。虽然并行已经提高的处理时间,但是,前面说过,邮件和短信对我正常的使用网站没有任何影响,客户端没有必要等着其发送完成才显示注册成功,应该是写入数据库后就返回,然后进入网站,进行正常操作.消息队列:引入消息队列后,把发送邮件,短信不是必须的业务逻辑异步处理

由此可以看出引入消息队列后,用户的响应时间就等于写入数据库的时间+写入消息队列的时间(可以忽略不计),引入消息队列后处理后,响应时间是串行的3倍,是并行的2倍。

2.2应用解耦

场景:

双11是购物狂节,用户下单后,订单系统需要通知库存系统,传统的做法就是订单系统调用库存系统的接口.

这种做法有一个缺点:当库存系统出现故障时,订单就会失败。订单系统和库存系统高耦合.引入消息队列.

订单系统:用户下单后,订单系统完成持久化处理,将消息写入消息队列,返回用户订单下单成功。

库存系统:订阅下单的消息,获取下单消息,进行库操作。就算库 存系统出现故障,消息队列也能保证消息的可靠投递,不会导致消息丢失.

(比如说应该减去库存,一直不减。然后前面一直卖东西,最后超过库存数量????)

这时候需要redis。

检查缓存中该用户是否已经下单过:在消息队列下单成功后写入redis一条用户id和商品id绑定的数据
没有下单过,检查缓存中商品是否还有库存
缓存中如果有库存,则将用户id和商品id封装为消息体传给消息队列处理
注意:这里的有库存和已经下单都是缓存中的结论,存在不可靠性,在消息队列中会查表再次验
证,作为兜底逻辑

2.3流量削峰

场景:

秒杀活动,一般会因为流量过大,导致应用挂掉,为了解决这个问题,一般在应用前端加入消息队列。

作用:

1.可以控制活动人数,超过此一定阀值的订单 直接丢弃

2.可以缓解短时间的高流量压垮应用(应用程序按自己的最大处理能力获取订单)

1.用户的请求,服务器收到之后,首先写入消息队列,加入消息队列长度超过最大值,则直接抛弃用户请求或跳转到错误页面.

2.秒杀业务根据消息队列中的请求信息,再做后续处理.

JMS(Java Message Service)和MQ(Message Queue)都是消息传递技术,用于在分布式系统中进行异步通信和解耦应用组件。 JMS是Java平台的消息传递标准,提供了一种用于创建、发送和接收消息的API。它适用于Java应用程序之间的通信,并且可以与各种消息中间件(包括MQ)集成。JMS适用于以下应用场景: 1. 发布/订阅模式:在这种模式下,消息发布者将消息发送到主题(Topic),而订阅者可以通过订阅主题来接收消息。这种模式适用于多个消费者需要同时接收消息的场景,如新闻订阅、实时数据更新等。 2. 点对点模式:在这种模式下,消息发送者将消息发送到队列(Queue),而接收者通过从队列中接收消息来消费。这种模式适用于只有一个接收者需要处理消息的场景,如任务分发、订单处理等。 MQ(Message Queue)是一种消息中间件,提供了可靠的消息传递机制,并支持多种通信协议。MQ适用于以下应用场景: 1. 异步通信:MQ可以实现异步通信,发送方将消息发送到队列中,而接收方可以在合适的时机从队列中获取消息并进行处理。这种方式可以提高系统的可靠性和性能,减少系统之间的耦合。 2. 流量削峰:当系统面临高峰期时,MQ可以作为缓冲层,接收并缓存请求,然后按照系统的处理能力逐步消费。这样可以避免系统过载,保证系统的稳定性。 3. 系统解耦:使用MQ可以将系统解耦,各个模块之间通过消息进行通信,而不是直接调用对方的接口。这样可以降低系统之间的依赖性,提高系统的灵活性和可维护性。 总而言之,JMS适用于Java应用程序之间的通信,而MQ适用于各种异步通信和解耦场景。它们可以根据具体的需求进行选择和使用。
评论 55
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值