lightoj1085 - All Possible Increasing Subsequences(树状数组)

题意:给你一个数列,问你有几个递增子序列(单个数字也算一个)


a1, a2, a3....an以ai结尾的递增子序列数量为在此之前出现的并且ak(k<i&&ak<ai)比他小的ak结尾的递增子序列数量之和+1(它本身)


这样就可以用树状数组做了,不断插入并且计算在这之前比他小的子序列和.


因为ai可能很大,所以此题需要离散化一下。


还有别忘了取模。


代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+5;
const int mod = 1e9+7;
int tree[maxn], b[maxn];
struct node
{
    int index, val;
    bool operator < (const node &a) const
    {
        return val < a.val;
    }
}a[maxn];

int lowbit(int x) { return x&(-x); }

void update(int pos, int val)
{
    while(pos < maxn)
    {
        tree[pos] = (tree[pos]+val)%mod;
        pos += lowbit(pos);
    }
}

int query(int pos)
{
    int sum = 0;
    while(pos)
    {
        sum = (sum+tree[pos])%mod;
        pos -= lowbit(pos);
    }
    return sum;
}

int main(void)
{
    int n, t, ca = 1;
    cin >> t;
    while(t--)
    {
        memset(tree, 0, sizeof(tree));
        scanf("%d", &n);
        for(int i = 1; i <= n; i++)
            scanf("%d", &a[i].val), a[i].index = i;
        sort(a+1, a+1+n);
        for(int i = 1; i <= n; i++)
        {
            b[a[i].index] = i;
            if(a[i].val == a[i-1].val)
                b[a[i].index] = b[a[i-1].index];
        }
        int temp, sum = 0;
        for(int i =  1; i <= n; i++)
        {
            temp = (query(b[i]-1)+1)%mod;
            sum = (sum+temp)%mod;
            update(b[i], temp);
        }
        printf("Case %d: %d\n", ca++, sum);
    }
    return 0;
}

1085 - All Possible Increasing Subsequences
Time Limit: 3 second(s)Memory Limit: 64 MB

An increasing subsequence from a sequence A1, A2 ... An is defined by Ai1, Ai2 ... Aik, where the following properties hold

1.      i1 < i2 < i3 < ... < ik and

2.      Ai1 < Ai2 < Ai3 < ... < Aik

Now you are given a sequence, you have to find the number of all possible increasing subsequences.

Input

Input starts with an integer T (≤ 10), denoting the number of test cases.

Each case contains an integer n (1 ≤ n ≤ 105) denoting the number of elements in the initial sequence. The next line will contain n integers separated by spaces, denoting the elements of the sequence. Each of these integers will be fit into a 32 bit signed integer.

Output

For each case of input, print the case number and the number of possible increasing subsequences modulo 1000000007.

Sample Input

Output for Sample Input

3

3

1 1 2

5

1 2 1000 1000 1001

3

1 10 11

Case 1: 5

Case 2: 23

Case 3: 7

Notes

1.      For the first case, the increasing subsequences are (1), (1, 2), (1), (1, 2), 2.

2.      Dataset is huge, use faster I/O methods.







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值