题意:N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。
思路:
答案有两种形式1.正常的最大连续序列 2.开始在尾,结束在首
第一种正常求,第二种考虑答案的组成,开始的一段+到结尾的一段,那么中间为什么去掉呢,因为中间那段和为负数,只要求出负数最大的连续子序列去掉就行了max(ans1,sum+ans2);
代码:
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
ll a[maxn];
int main(void)
{
int n;
while(cin >> n)
{
ll all = 0;
for(int i = 0; i < n; i++)
scanf("%lld", &a[i]), all += a[i];
ll tmp = 0, sum = 1e18, pre = 0;
for(int i = 0; i < n; i++)
{
tmp += a[i];
if(tmp > 0) tmp = 0, pre = i+1;
if(tmp < sum) sum = tmp;
}
ll ans2 = all-sum;
ll ans1 = 0;
tmp = 0;
for(int i = 0; i < n; i++)
{
tmp += a[i];
if(tmp < 0) tmp = 0;
if(tmp > ans1) ans1 = tmp;
}
printf("%lld\n", max(ans1, ans2));
}
return 0;
}