51nod 1050 循环数组最大子段和(思维)

55 篇文章 0 订阅
题意:N个整数组成的循环序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的连续的子段和的最大值(循环序列是指n个数围成一个圈,因此需要考虑a[n-1],a[n],a[1],a[2]这样的序列)。当所给的整数均为负数时和为0。
例如:-2,11,-4,13,-5,-2,和最大的子段为:11,-4,13。和为20。

思路: 答案有两种形式1.正常的最大连续序列 2.开始在尾,结束在首 
第一种正常求,第二种考虑答案的组成,开始的一段+到结尾的一段,那么中间为什么去掉呢,因为中间那段和为负数,只要求出负数最大的连续子序列去掉就行了max(ans1,sum+ans2);

代码:
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
const int maxn = 1e5+5;
ll a[maxn];

int main(void)
{
    int n;
    while(cin >> n)
    {
        ll all = 0;
        for(int i = 0; i < n; i++)
            scanf("%lld", &a[i]), all += a[i];
        ll tmp = 0, sum = 1e18, pre = 0;
        for(int i = 0; i < n; i++)
        {
            tmp += a[i];
            if(tmp > 0) tmp = 0, pre = i+1;
            if(tmp < sum) sum = tmp;
        }
        ll ans2 = all-sum;
        ll ans1 = 0;
        tmp = 0;
        for(int i = 0; i < n; i++)
        {
            tmp += a[i];
            if(tmp < 0) tmp = 0;
            if(tmp > ans1) ans1 = tmp;
        }
        printf("%lld\n", max(ans1, ans2));
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值