循环矩阵傅里叶对角化

转载自https://blog.csdn.net/shenxiaolu1984/article/details/50884830

相关KCF跟踪算法讲解:

https://blog.csdn.net/shenxiaolu1984/article/details/50905283
https://www.cnblogs.com/YiXiaoZhou/p/5925019.html

Matlab代码实现:
https://blog.csdn.net/bitopyx/article/details/81948875?spm=1001.2014.3001.5502

https://blog.csdn.net/weixin_38128100/article/details/95729653

All circulant matrices are made diagonal by the Discrete Fourier Transform (DFT), regardless of the generating vector x.
任意循环矩阵可以被傅里叶变换矩阵对角化。

文献中,一般用如下方式表达这一概念:
在这里插入图片描述
其中 X X X是循环矩阵, x ^ \hat{x} x^是原向量 x x x的傅里叶变换, F F F是傅里叶变换矩阵,上标H表示共轭转置: X H = ( X ∗ ) T X^H=(X^*)^T XH=(X)T

换句话说, X X X相似于对角阵, X X X的特征值是 x ^ \hat x x^的元素。

另一方面,如果一个矩阵能够表示成两个傅里叶矩阵夹一个对角阵的乘积形式,则它是一个循环矩阵。其生成向量是对角元素的傅里叶逆变换。
在这里插入图片描述
这个公式初看疑问很多,以下意义讨论。

X X X是什么?

X X X是由原向量 x x x生成的循环矩阵。以矩阵尺寸 K = 4 K=4 K=4为例。
在这里插入图片描述

F F F是什么?

F F F是离散傅里叶矩阵(DFT matrix),可以用一个复数 w = e − 2 π i / K w=e^{-2\pi i/K} w=e2πi/K表示,其中 K K K为方阵 F F F的尺寸,以 K = 4 K=4 K=4为例。
在这里插入图片描述
w w w想象成一个角度为 2 π / K 2\pi /K 2π/K的向量,这个矩阵的每一行是这个向量不断旋转。从上到下,旋转速度越来越快。
之所以称为DFT matrix,是因为一个信号的DFT变换可以用此矩阵的乘积获得:
在这里插入图片描述
反傅里叶变换也可以通过类似手段得到:
在这里插入图片描述
傅里叶矩阵有许多性质:

  • 是对称矩阵,观察 w w w的规律即可知;
  • 满足 F H F = F F H = I F^HF=FF^H=I FHF=FFH=I,也就是说它是个酉矩阵。
    注意: F F F是常数,可以提前计算好,和要处理的 x x x无关。

对角化怎么理解?

把原公式两边乘以逆矩阵:
在这里插入图片描述
利用酉矩阵性质:
在这里插入图片描述
也就是说,矩阵 X X X通过相似变换 F F F变成对角阵 d i a g ( x ^ ) diag(\hat x) diag(x^),即对循环矩阵 X X X进行对角化。另外, F H X F F^HXF FHXF是矩阵 X X X的2D DFT变换。即傅里叶变换可以把循环矩阵对角化。

怎么证明?

可以用构造特征值和特征向量的方法证明(参看这篇论文(Gray, Robert M. Toeplitz and circulant matrices: A review. now publishers inc, 2006.)的3.1节)。此处简单描述。
考察待证明等式的第k列:
在这里插入图片描述
其中, f k f_k fk表示DFT矩阵的第k列, x ^ k \hat x_k x^k表示傅里叶变换的第k个元素。等价于求证: f k f_k fk x ^ k \hat x_k x^k X X X的一对特征向量和特征值。
左边向量的第i个元素为: l e f t i = [ x i , f k ] left_i=[x^i,f_k] lefti=[xi,fk] x i x^i xi表示把生成向量 x x x向右移动i位,[]表示内积。内积只和两个向量的相对位移有关,所以可以把 f k f_k fk向左移动i位: l e f t i = [ x , f k − i ] left_i=[x,f_k^{-i}] lefti=[x,fki]。DFT矩阵列的移位可以通过数乘 w w w的幂实现: f k i = f 0 ⋅ w i k f_k^i=f_0\cdot w^{ik} fki=f0wik

更多性质

利用对角化,能推导出循环矩阵的许多性质。

转置

循环矩阵的转置也是一个循环矩阵(可以查看循环矩阵各元素排列证明),其特征值和原特征值共轭。
在这里插入图片描述
可以通过如下方式证明:
在这里插入图片描述
由于 F F F是对称酉矩阵,且已知 X X X是实矩阵:
在这里插入图片描述
如果原生成向量 x x x是对称向量(例如[1,2,3,4,3,2]),则其傅里叶变换为实数,则:
在这里插入图片描述

卷积

循环矩阵乘向量等价于生成向量的逆序和该向量卷积,可进一步转化为傅里叶变换相乘。注意卷积本身即包含逆序操作,另外利用了信号与系统中经典的“时域卷积,频域相乘”。
在这里插入图片描述
其中 x ˉ \bar x xˉ表示把 x x x的元素倒序排列。星号表示共轭。

相乘

A , B A, B A,B为循环矩阵,其乘积的特征值等于特征值的乘积:
在这里插入图片描述
乘积也是循环矩阵,其生成向量是原生成向量对位相乘的傅立叶逆变换。

相加

和的特征值等于特征值的和。
在这里插入图片描述
和也是循环矩阵,其生成向量是原生成向量的和。

求逆

循环矩阵的逆,等价于将其特征值求逆。
在这里插入图片描述
对角阵求逆等价于对角元素求逆,以下证明:
在这里插入图片描述
逆也是循环矩阵。

有什么用?

该性质可以将循环矩阵的许多运算转换成更简单的运算。例如:
在这里插入图片描述
原始计算量:两个方阵相乘 ( O ( K 3 ) ) (O(K^3)) (O(K3))
转化后的计算量:反向傅里叶 ( K l o g K ) + (K logK)+ (KlogK)+向量点乘 ( K ) (K) (K)
CV的许多算法中,都利用了这些性质提高运算速度,例如2015年TPAMI的这篇高速跟踪KCF方法。

二维情况

以上探讨的都是原始信号为一维的情况,以下证明二维情况下的 F H X F = d i a g ( x ^ ) F^HXF=diag(\hat x) FHXF=diag(x^),推到方法和一维类似。
x x x是二维生成矩阵,尺寸 N × N N\times N N×N
X X X是一个 N 2 × N 2 N^2\times N^2 N2×N2的分块循环矩阵,其uv块记为 x u v x^{uv} xuv,表示 x x x下移u行,右移v列。
F F F N 2 × N 2 N^2\times N^2 N2×N2的二维DFT矩阵,其第uv块记为 f u v = { w u i + v j } i j f_{uv}=\{w^{ui+vj}\}_{ij} fuv={wui+vj}ij
在这里插入图片描述
需要验证的共有 N × N N\times N N×N个等式,其中第uv个为:
在这里插入图片描述
其中, [ X , f u v ] [X,f_{uv}] [X,fuv]表示把 x u v x^{uv} xuv分别和 f u v f_{uv} fuv做点乘,结果矩阵元素求和。
这个等式的第ij元素为:
在这里插入图片描述
再次利用两个性质:(1)点乘只和两个矩阵相对位移有关(2) f u v f_{uv} fuv的位移可以用乘 w w w幂实现:
在这里插入图片描述

代码

以下matlab代码验证上述性质。需要注意的是,matlab中的dftmatx函数给出的结果和本文定义略有不同,需做一简单转换。另外,matlab中的撇号表示共轭转置,transpose为转置函数,conj为共轭函数。

clear;clc;close all;

% 1. diagnolize 
K = 5;      % dimension of problem

x_base = rand(1,K);     % generator vector
X = zeros(K,K);         % circulant matrix
for k=1:K
    X(k,:) = circshift(x_base, [0 k-1]);
end

x_hat = fft(x_base);    % DFT

F = transpose(dftmtx(K))/sqrt(K);       % the " ' " in matlab is transpose + conjugation

X2 = F*diag(x_hat)*F';

display(X);
display(real(X2));

% 2. fast compute correlation
C = X'*X;
C2 = (x_hat.*conj(x_hat))*conj(F)/sqrt(K);

display(C);
display(C2);
  • 6
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设 $A$ 是一个 $n\times n$ 的任意循环矩阵,即 $A$ 的每一行都是将前一行向右移动一位,使得最后一列元素移动到第一列。例如,一个 $4\times4$ 的循环矩阵可以写成: $$ A=\begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{bmatrix} $$ 我们可以证明,任意循环矩阵 $A$ 可以被傅里叶变换矩阵角化傅里叶变换矩阵是一个 $n\times n$ 的矩阵,记作 $F_n$,其中第 $i$ 行第 $j$ 列的元素为: $$ F_n(i,j) = \frac{1}{\sqrt{n}}e^{-2\pi i (i-1)(j-1)/n} $$ 现在我们来证明 $A$ 可以被 $F_n$ 对角化。首先,我们可以证明 $F_n$ 有一个很重要的性质:$F_n^*F_n=nI$,即 $F_n$ 的共轭转置和自身的乘积等于 $n$ 倍的单位矩阵。这个性质可以通过计算 $F_n^*F_n$ 得到: $$ \begin{aligned} (F_n^*F_n)_{i,j} &= \sum_{k=1}^n \overline{F_n(k,i)}F_n(k,j) \\ &= \frac{1}{n}\sum_{k=1}^ne^{2\pi i(k-1)(i-j)/n} \\ &= \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases} \end{aligned} $$ 接下来,我们要证明的是:如果 $A$ 是一个任意循环矩阵,那么就存在一个矩阵 $U$,使得 $U$ 是幺正矩阵(即 $UU^*=U^*U=I$),并且 $U^{-1}AU$ 是对角矩阵。我们可以通过 $F_n$ 来构造这个矩阵 $U$: $$ U = \frac{1}{\sqrt{n}}F_n $$ 首先,我们来证明 $U$ 是幺正矩阵。根据上面的性质,我们有: $$ \begin{aligned} UU^* &= \frac{1}{n}FF^*F_n \\ &= \frac{1}{n}F_n(nI) \\ &= I \end{aligned} $$ 同样地,我们可以证明 $U^*U=I$。因此,$U$ 确实是一个幺正矩阵。 接下来,我们来计算 $U^{-1}AU$。首先,我们有: $$ \begin{aligned} U^{-1} &= \frac{1}{\sqrt{n}}F_n^{-1} \\ &= \frac{1}{\sqrt{n}}F_n^* \end{aligned} $$ 因为 $A$ 是任意循环矩阵,所以可以将其写成一个矩阵 $B$ 的循环移位形式。例如,对于上面的 $4\times4$ 的循环矩阵 $A$,我们可以将其写成: $$ A = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_4 & a_1 & a_2 & a_3 \\ a_3 & a_4 & a_1 & a_2 \\ a_2 & a_3 & a_4 & a_1 \end{bmatrix} = \begin{bmatrix} a_1 & a_2 & a_3 & a_4 \\ a_1 & a_2 & a_3 & a_4 \\ a_1 & a_2 & a_3 & a_4 \\ a_1 & a_2 & a_3 & a_4 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & 0 \\ a_4-a_1 & 0 & 0 & 0 \\ 0 & a_4-a_1 & 0 & 0 \\ 0 & 0 & a_4-a_1 & 0 \end{bmatrix} $$ 其中,第一个矩阵是 $B$,第二个矩阵是 $A-B$。注意到 $B$ 是一个常规矩阵,而 $A-B$ 的每一行都是将前一行向右移动一位。因此,我们可以将 $A-B$ 写成 $C$ 的循环移位形式,其中 $C$ 是一个 $n\times n$ 的矩阵,其第一行为 $a_4-a_1, 0, \cdots, 0$,其余行为 $0$。因此,我们有: $$ C = \begin{bmatrix} a_4-a_1 & 0 & \cdots & 0 \\ 0 & a_4-a_1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_4-a_1 \end{bmatrix} $$ 于是,我们可以将 $A$ 写成 $B+C$ 的形式。接下来,我们来计算 $U^{-1}AU$: $$ \begin{aligned} U^{-1}AU &= \frac{1}{\sqrt{n}}F_n^*(B+C)F_n \\ &= \frac{1}{n}\sum_{i,j,k} \overline{F_n^*(i,k)}(B+C)_{k,j}F_n(j,i) \\ &= \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}(B+C)_{k,j}F_n(k,i) \end{aligned} $$ 注意到 $B$ 是一个常规矩阵,因此 $BF_n=F_nB$。同时,$C$ 是一个循环矩阵,因此 $CF_n=F_nC$。因此,我们有: $$ \begin{aligned} U^{-1}AU &= \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}BF_n(k,i) + \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}CF_n(k,i) \\ &= B + \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}CF_n(k,i) \end{aligned} $$ 因为 $C$ 是对角矩阵,所以 $CF_n$ 的每一列都是将前一列向右移动一位,使得最后一列元素移动到第一列。因此,$CF_n$ 可以写成: $$ CF_n = \begin{bmatrix} c_1 & c_n & \cdots & c_2 \\ c_2 & c_1 & \cdots & c_3 \\ \vdots & \vdots & \ddots & \vdots \\ c_n & c_{n-1} & \cdots & c_1 \end{bmatrix} $$ 其中 $c_i$ 表示 $C$ 的第 $i$ 个对角元素。因此,我们有: $$ \begin{aligned} \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}CF_n(k,i) &= \frac{1}{n}\sum_{i,j,k} \overline{F_n(j,i)}c_kF_n(k,i) \\ &= \begin{bmatrix} \frac{1}{n}\sum_{k=1}^n c_k & 0 & \cdots & 0 \\ 0 & \frac{1}{n}\sum_{k=1}^n c_ke^{2\pi i(j-1)(k-1)/n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{n}\sum_{k=1}^n c_ke^{2\pi i(j-1)(k-1)/n} \end{bmatrix} \end{aligned} $$ 因此,我们有: $$ U^{-1}AU = B + \begin{bmatrix} \frac{1}{n}\sum_{k=1}^n c_k & 0 & \cdots & 0 \\ 0 & \frac{1}{n}\sum_{k=1}^n c_ke^{2\pi i(j-1)(k-1)/n} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{1}{n}\sum_{k=1}^n c_ke^{2\pi i(j-1)(k-1)/n} \end{bmatrix} $$ 因此,$U^{-1}AU$ 是一个对角矩阵。因此,我们证明了任意循环矩阵可以被傅里叶变换矩阵角化

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值