【目标跟踪】KCF高速跟踪详解

Henriques, João F., et al. “High-speed tracking with kernelized
correlation filters.” Pattern Analysis and Machine Intelligence, IEEE
Transactions on 37.3 (2015): 583-596.

思想

1. I t I_t 帧中，在当前位置 p t p_t 附近采样，训练一个回归器。这个回归器能计算一个小窗口采样的响应。
2. I t + 1 I_{t+1} 帧中，在前一帧位置 p t p_t 附近采样，用前述回归器判断每个采样的响应。
3. 响应最强的采样作为本帧位置 p t + 1 p_{t+1}

线性回归训练提速

w = ( X H X + λ I ) − 1 X H y w=\left( X^HX+\lambda I\right)^{-1}X^Hy

w = ( F d i a g ( x ^ ⊙ x ^ ∗ ) F H + λ F d i a g ( δ ) F H ) − 1 X H y w=\left( Fdiag(\hat x \odot \hat x^*)F^H+\lambda Fdiag(\delta)F^H\right)^{-1}X^Hy

= ( F d i a g ( x ^ ⊙ x ^ ∗ + λ δ ) F H ) − 1 X H y =\left( Fdiag(\hat x \odot \hat x^*+\lambda\delta)F^H \right)^{-1}X^Hy

w = F ⋅ d i a g ( 1 x ^ ⊙ x ^ ∗ + λ δ ) ⋅ F H X H y w=F\cdot diag\left(\frac{1}{\hat x \odot \hat x^*+\lambda\delta} \right) \cdot F^H X^H y

w = F ⋅ d i a g ( 1 x ^ ⊙ x ^ ∗ + λ δ ) ⋅ F H ⋅ F d i a g ( x ^ ∗ ) F H ⋅ y w=F\cdot diag\left(\frac{1}{\hat x \odot \hat x^*+\lambda\delta} \right) \cdot F^H \cdot Fdiag(\hat{x}^*)F^H\cdot y

w = F ⋅ d i a g ( x ^ ∗ x ^ ⊙ x ^ ∗ + λ δ ) ⋅ F H ⋅ y w=F\cdot diag\left(\frac{\hat{x}^*}{\hat x \odot \hat x^*+\lambda\delta} \right) \cdot F^H \cdot y

w = C ( F − 1 ( x ^ ∗ x ^ ⊙ x ^ ∗ + λ δ ) ) ⋅ y w=C\left( \mathcal{F}^{-1}\left( \frac{\hat{x}^*}{\hat x \odot \hat x^*+\lambda\delta}\right) \right) \cdot y

F ( w ) = ( x ^ ∗ x ^ ⊙ x ^ ∗ + λ δ ) ∗ ⊙ F ( y ) \mathcal{F}(w)=\left( \frac{\hat{x}^*}{\hat x \odot \hat x^*+\lambda\delta}\right )^* \odot \mathcal F(y)

F ( w ) = x ^ x ^ ⊙ x ^ ∗ + λ δ ⊙ F ( y ) = x ^ ⊙ y ^ x ^ ⊙ x ^ ∗ + λ δ \mathcal{F}(w)=\frac{\hat{x}}{\hat x \odot \hat x^*+\lambda\delta} \odot \mathcal F(y)=\frac{\hat{x}\odot \hat{y}}{\hat x \odot \hat x^*+\lambda\delta}

核回归训练提速

f ( z ) = α T κ ( z ) f(z)=\alpha^T \kappa(z)

α = ( K + λ I ) − 1 y \alpha = \left( K + \lambda I\right)^{-1}y

K K 为所有训练样本的核相关矩阵： K i j = κ ( x i , x j ) K_{ij}=\kappa(x_i,x_j) 。如果核函数选择得当，使得 x x 内部元素顺序更换不影响核函数取值，则可以保证 K K 也是循环矩阵。以下核都满足这样的条件：

α = ( F d i a g ( k ^ ) F H + F d i a g ( λ δ ) F H ) − 1 y = ( F d i a g ( k ^ + λ δ ) F H ) − 1 y \alpha = \left( Fdiag(\hat k)F^H+Fdiag(\lambda\delta)F^H \right)^{-1}y=\left( Fdiag(\hat k + \lambda\delta)F^H \right)^{-1}y

= F d i a g ( 1 k ^ + λ δ ) F H y = C ( F − 1 ( 1 k ^ + λ δ ) ) y =Fdiag\left(\frac{1}{\hat k + \lambda\delta}\right)F^Hy=C\left( \mathcal F^{-1} \left(\frac{1}{\hat k + \lambda\delta} \right) \right)y

α ^ = ( 1 k ^ + λ δ ) ∗ ⊙ y ^ \hat{\alpha}=\left( \frac{1}{\hat k + \lambda\delta} \right)^* \odot \hat y

k i = κ ( x 0 , x i ) , k N − i = κ ( x 0 , x N − i ) k_i=\kappa(x^0,x^i), k_{N-i}=\kappa(x^0,x^{N-i})

α ^ = ( 1 k ^ + λ δ ) ⊙ y ^ = y ^ k ^ + λ δ \hat{\alpha}=\left( \frac{1}{\hat k + \lambda\delta} \right) \odot \hat y=\frac{\hat y}{\hat k + \lambda\delta}

核回归检测提速

y ′ = K T α y'=K^T\alpha

y ′ = C ( k ) T ⋅ α = C ( k ^ ∗ ) ⋅ α = k ∗ ∗ α y'=C(k)^T\cdot \alpha=C(\hat k ^*)\cdot \alpha =k^**\alpha

y ′ = ( k ∗ ) ∗ α = k ∗ α y'=(k^*)*\alpha=k*\alpha

y ′ ^ = k ^ ⊙ α ^ \hat {y'}=\hat k \odot \hat \alpha

核相关矩阵计算提速

多项式核

κ ( x , y ) = f ( x T y ) \kappa(x,y)=f\left( x^Ty\right)

K = f ( X T Y ) K=f\left( X^T Y\right)

f f 在矩阵的每个元素上单独进行。根据循环矩阵性质， X T Y X^TY 也是一个循环矩阵，其生成向量为 F − 1 ( y ^ ⊙ x ^ ∗ ) \mathcal F^{-1}(\hat y\odot \hat x^*) 。所以核相关矩阵的生成向量为：
k = f ( F − 1 ( y ^ ⊙ x ^ ∗ ) ) k=f\left( \mathcal F^{-1}(\hat y\odot \hat x^*) \right)

RBF核

κ ( x , y ) = f ( ∣ ∣ x − y ∣ ∣ 2 ) \kappa(x,y)=f(||x-y||^2)

κ ( x , y ) = f ( ∣ ∣ x − y ∣ ∣ 2 ) = f ( ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 + 2 x T y ) \kappa(x,y)=f(||x-y||^2)=f(||x||^2+||y||^2+2x^Ty)

k = f ( ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 + F − 1 ( y ^ ⊙ x ^ ∗ ) ) k=f\left( ||x||^2 + ||y||^2+\mathcal F^{-1}(\hat y\odot \hat x^*) \right)

多通道

x T y = ∑ l ( x l ) T y l x^Ty=\sum_l(x^l)^Ty^l

f ( z ) = K z α f(z)=K^z\alpha

• 97
点赞
• 346
收藏
• 打赏
• 71
评论
04-25
11-09 106
12-28 155
12-09 135
08-19 1031
05-26 928
12-27 667
11-13 3万+
12-24 1128
07-13 2万+
08-03 1万+
06-15 1331
04-13 4984
12-08 13万+

“相关推荐”对你有帮助么？

• 非常没帮助
• 没帮助
• 一般
• 有帮助
• 非常有帮助

©️2022 CSDN 皮肤主题：大白 设计师：CSDN官方博客

shenxiaolu1984

¥2 ¥4 ¥6 ¥10 ¥20

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。