Langchain编程中常见Python库依赖安装

Langchain编程中常见Python库以及用途

Langchain-chat 项目依托于一系列丰富而强大的依赖库,展现出了巨大的潜力和广泛的应用前景。langsmith 可能在语言处理的流程管理和优化方面发挥着重要作用,为项目提供了高效的语言处理框架支持。jsonschema 确保数据的规范性和一致性,保障了项目中数据交互的准确性。fastapi 作为高性能的 Web 框架,为项目的后端服务提供了快速、稳定的运行环境,使得语言交互可以通过网络高效地进行。unstructured 库则能够处理各种非结构化数据,为项目拓宽了数据来源和处理能力。
而 Streamlit 相关的众多库更是为项目带来了丰富的交互体验和可视化效果。从垂直滑块到切换开关,从粘贴按钮到选项菜单,这些组件让用户能够更加便捷地与应用进行交互。模态窗口、图像坐标获取、反馈收集等功能则进一步增强了用户与应用之间的互动性。同时,aggrid 组件的集成使得表格数据的展示和操作更加高效,antd 组件的引入为应用增添了专业的界面设计元素。
langchain 核心库及其相关扩展,如 langchain-openai、langchain-community 等,为语言模型的交互、知识图谱构建和文本生成等关键功能提供了强大的支持。markdownlit 方便了 Markdown 文本的处理,而 langchain-chatchat 则专注于构建聊天交互应用。总之,这些依赖库共同为 Langchain-chat 项目打造了一个功能强大、交互丰富、应用广泛的语言交互平台。
#安装conda环境
 conda env list #查看环境
 conda config --show #查看配置
 conda config --remove channels  https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
 conda config --remove channels  https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
 conda config --add channels  https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main

 conda create -n chatchat python=3.8 #创建新环境chatchat
 conda activate chatchat             #激活环境
 pip install langchain-chatchat -U   #安装langchain-chatchat库
 pip install -i https://pypi.tuna.tsinghua.edu.cn/simple    -r requirements.txt    #指定源从需求文件清单中安装
 conda list | findstr torch        #检测依赖是否安装成功
  torch                     2.4.0                    pypi_0    pypi
  torchaudio                2.4.0                    pypi_0    pypi
  torchvision               0.19.0                   pypi_0    pypi



strsimpy, pytz, python-magic-bin, python-decouple, pyreadline3, pyclipper, 
pathlib, mpmath, jieba, flatbuffers, filetype, faiss-cpu, brotli, zipp, wrapt, 
win32-setctime, websockets, watchdog, validators, urllib3, typing-extensions, tornado, toolz, toml, tenacity, 
tabulate, sympy, soupsieve, socksio, sniffio, smmap, six, simplejson, 
ruamel.yaml.clib, rpds-py, regex, rapidfuzz, PyYAML, python-multipart, python-magic, 
python-iso639, python-dotenv, pyparsing, pymysql, PyMuPDFb, pyjwt, pygments, protobuf, prometheus-client,
pkgutil-resolve-name, pillow, packaging, orjson, ordered-set, numpy, networkx, nest-asyncio, mypy-extensions, 
multidict, more-itertools, memoization, mdurl, MarkupSafe, lxml, kiwisolver, jsonpointer, jsonpath-python, 
joblib, jiter, idna, hyperframe, humanfriendly, hpack, h11, greenlet, frozenlist, fonttools, exceptiongroup, 
et-xmlfile, entrypoints, distro, cycler, colorama, charset-normalizer, chardet, certifi, cachetools, blinker, 
backoff, attrs, async-timeout, aiohappyeyeballs, yarl, typing-inspect, types-requests, tqdm, SQLAlchemy,
Shapely, ruamel_yaml, requests, referencing, rank_bm25, python-docx, python-dateutil, pypdf, PyMuPDF, 
pydantic-core, pyarrow, openpyxl, opencv-python, numexpr, marshmallow, markdown-it-py, loguru, langdetect,
jsonpatch, jinja2, importlib-resources, importlib-metadata, httpcore, htbuilder, h2, gitdb, emoji, 
deprecation, deepdiff, contourpy, coloredlogs, click, beautifulsoup4, anyio, annotated-types, aiosignal,
uvicorn, tiktoken, starlette, st-annotated-text, rich, requests-toolbelt, pydeck, pydantic, pandas, 
onnxruntime, nltk, matplotlib, markdownify, markdown, langchainhub, jsonschema-specifications, httpx,
gitpython, favicon, faker, dataclasses-json, aiohttp, unstructured-client, rapidocr_onnxruntime, 
pymdown-extensions, pydantic_settings, openai, langsmith, jsonschema, fastapi, unstructured, 
sse_starlette, langchain-core, altair, streamlit, langchain-text-splitters, langchain-openai, 
langchain-community, streamlit-vertical-slider, streamlit-toggle-switch, streamlit-paste-button, 
streamlit-option-menu, streamlit-modal, streamlit-keyup, streamlit-image-coordinates, streamlit-feedback, 
streamlit-embedcode, streamlit-card, streamlit-camera-input-live, streamlit-antd-components,
streamlit-aggrid, langchain, streamlit-chatbox, langchain-experimental, streamlit-faker, 
markdownlit, streamlit-extras, langchain-chatchat

-pytz:用于处理时区相关的问题。
-jieba:中文分词工具。
-sympy:用于符号计算。
-urllib3:用于发送 HTTP 请求。
-tornado:一个异步的网络框架。
-toml:用于处理 TOML 格式的配置文件。
-tenacity:提供重试功能的库。
-tabulate:用于将数据以表格形式输出。
-flatbuffers:高效的跨平台序列化库,可用于快速的数据交换和存储。
-filetype:用于识别文件类型。
-faiss-cpu:高效的相似性搜索和聚类库,常用于大规模数据的相似性检索。
-brotli:一种数据压缩算法的实现库,用于压缩和解压缩数据。
-zipp:用于操作 ZIP 归档文件。
-wrapt:有助于实现装饰器和代理对象等高级编程模式。
-win32-setctime:可能与在 Windows 系统上设置文件创建时间相关。
-websockets:用于在 Python 中实现 WebSocket 协议,进行双向通信。
-watchdog:用于监控文件系统的变化。
-validators:提供各种数据验证函数。
-typing-extensions:为 Python 的类型提示提供额外的功能和扩展。
-toolz:提供函数式编程工具。
-soupseive:用于过滤和选择 HTML/XML 文档中的元素,通常配合 BeautifulSoup 使用。
-socksio:可能与使用 SOCKS 代理进行网络通信有关。
-sniffio:用于检测当前正在运行的异步库。
-smmap:用于内存映射文件。
-six:用于在 Python 2 和 Python 3 之间提供兼容性。
-simplejson:提供比 Python 内置 JSON 模块更灵活的 JSON 处理功能。
-ruamel.yaml.clib:可能与处理 YAML 格式配置文件相关的库。
-rpds-py:不太清楚具体用途,可能是特定领域的数据处理库。
-regex:用于正则表达式处理。
-rapidfuzz:用于快速的字符串匹配和模糊搜索。
-PyYAML:用于读写 YAML 格式的文件。

-python-multipart:通常用于处理 HTTP 中的 multipart/form-data 类型的数据,比如文件上传等场景。

-python-magic:用于识别文件类型,类似于 filetype 库。

-python-iso639:可能与处理 ISO 639 语言代码相关,用于语言识别和转换等。

-python-dotenv:用于从 .env 文件中加载环境变量。

-pyparsing:用于解析文本和创建自定义的语法解析器。

-pymysql:用于连接和操作 MySQL 数据库。

-PyMuPDF:用于处理 PDF 文件,包括读取、编辑等操作。

-pyjwt:用于生成和验证 JSON Web Tokens。

-pygments:语法高亮库,可以为各种编程语言的代码进行语法高亮显示。

-protobuf:Google 的 Protocol Buffers 的 Python 实现,用于高效的序列化和反序列化结构化数据。

-prometheus-client:用于与 Prometheus 监控系统集成,提供指标收集和暴露功能。

-pkgutil-resolve-name:不太清楚具体用途,可能与 Python 包的名称解析相关。

-pillow:强大的图像处理库。

-packaging:提供对 Python 包的打包和分发相关的功能。

-orjson:快速的 JSON 处理库。

-ordered-set:提供有序的集合数据结构。

-numpy:用于数值计算,提供高效的多维数组和矩阵运算。

-networkx:用于创建、操作和研究复杂网络的库。

-nest-asyncio:用于在特定情况下嵌套使用 asyncio 事件循环。

-mypy-extensions:为静态类型检查工具 mypy 提供扩展功能。

-multidict:提供支持多个值对应一个键的数据结构。

-more-itertools:提供额外的迭代器工具和函数。

-memoization:用于实现函数的记忆化,提高函数调用效率。

-mdurl:可能与处理 Markdown 中的 URL 相关。

-MarkupSafe:用于处理安全的 HTML 和 XML 标记,防止跨站脚本攻击。

-lxml:强大的 XML 和 HTML 处理库,支持 XPath 和 CSS 选择器等。

-kiwisolver:用于解决约束优化问题。

-jsonpointer:用于处理 JSON Pointer,一种用于指向 JSON 文档中特定部分的语法。

-jsonpath-python:用于在 JSON 文档中使用 JSONPath 表达式进行查询。

-joblib:用于并行计算和保存/加载 Python 对象。

-jiter:不太清楚具体用途。

-idna:用于处理国际化域名(IDN)。

-hyperframe:不太清楚具体用途,可能与 HTTP/2 协议中的帧处理相关。

-humanfriendly:提供用户友好的输出和交互功能。

-hpack:与 HTTP/2 头部压缩相关。

-h11:可能是一个 HTTP/1.1 和 HTTP/2 的实现库。

-greenlet:用于实现轻量级的协程。

-frozenlist:提供不可变的列表数据结构。

-fonttools:用于处理字体文件。

-exceptiongroup:用于处理多个异常的分组。

-et-xmlfile:不太清楚具体用途,可能与处理 XML 文件相关。

-entrypoints:用于发现和加载可插拔的插件系统。

-distro:用于获取操作系统的发行版信息。

-cycler:用于创建循环的迭代器,通常在绘图中用于循环使用颜色、线型等。

-colorama:用于在终端中输出彩色文本。

-charset-normalizer:用于字符集检测和规范化。

-chardet:用于检测文本文件的字符编码。

-certifi:提供可信任的根证书,用于验证 HTTPS 连接。

-cachetools:提供各种缓存实现,用于提高函数调用的效率。

-blinker:提供信号和事件系统,用于解耦代码。

-backoff:用于实现重试策略,在遇到错误时自动重试。

-attrs:简化类的定义,提供更简洁的方式定义带有属性的类。

-async-timeout:用于在异步代码中设置超时。

-aiohappyeyeballs:在异步环境中实现 Happy Eyeballs 算法,用于快速建立网络连接。

-yarl:用于处理 URL 的库。

-typing-inspect:用于检查和操作 Python 的类型提示信息。

-types-requests:不太清楚具体用途,可能与 requests 库的类型相关。

-tqdm:用于在命令行或 Jupyter Notebook 中显示进度条。

-SQLAlchemy:强大的数据库对象关系映射(ORM)工具,用于连接和操作各种数据库。

-Shapely:用于处理几何对象的库,如点、线、多边形等。

-ruamel_yaml:用于处理 YAML 格式文件的库。

-requests:用于发送 HTTP 请求。

-referencing:不太清楚具体用途。

-rank_bm25:用于实现 BM25 算法进行文本排序和检索。

-python-docx:用于创建和操作 Microsoft Word(.docx)文件。

-python-dateutil:提供强大的日期和时间处理功能。

-pypdf:用于处理 PDF 文件。

-PyMuPDF:同前面介绍,用于处理 PDF 文件。

-pydantic-core:是 pydantic 的核心部分,用于数据验证和解析。

-pyarrow:用于高效的内存数据表示和与其他数据格式的转换。

-openpyxl:用于操作 Microsoft Excel(.xlsx)文件。

-opencv-python:用于计算机视觉应用的库。

-numexpr:用于快速数值表达式计算。

-marshmallow:用于对象序列化和反序列化。

-markdown-it-py:用于将 Markdown 文本转换为 HTML。

-loguru:一个简单易用的日志记录库。

-langdetect:用于检测文本的语言。

-jsonpatch:用于处理 JSON Patch,一种用于修改 JSON 文档的格式。

-jinja2:用于模板渲染的库。

-importlib-resources:用于访问包中的资源文件。

-importlib-metadata:用于获取包的元数据。

-httpcore:低级别的 HTTP 客户端库。

-htbuilder:不太清楚具体用途,可能与构建 HTML 相关。

-h2:用于实现 HTTP/2 协议。

-gitdb:用于与 Git 数据库交互。

-emoji:用于处理和识别 emoji 字符。

-deprecation:用于标记函数或方法已过时。

-deepdiff:用于比较两个对象之间的深度差异。

-contourpy:用于绘制等高线图。

-coloredlogs:用于在日志中添加颜色。

-click:用于创建命令行界面(CLI)应用。

-beautifulsoup4:用于解析 HTML 和 XML 文档。

-anyio:提供异步编程的工具和抽象。

-annotated-types:不太清楚具体用途,可能与带注释的类型相关。

-aiosignal:用于在异步环境中处理信号。

-uvicorn:快速的 ASGI 服务器,常用于部署异步 Web 应用。

-tiktoken:可能与处理 OpenAI 的 tokens 相关。

-starlette:轻量级的 ASGI 框架。

-st-annotated-text:不太清楚具体用途。

-rich:提供丰富的终端输出格式和功能。

-requests-toolbelt:为 requests 库提供额外的工具和功能。

-pydeck:用于创建数据可视化的库,特别是地理空间数据可视化。

-pydantic:用于数据验证和解析。

-pandas:强大的数据处理和分析库。

-onnxruntime:用于运行 ONNX 模型。

-nltk:自然语言处理工具包。

-matplotlib:用于绘制图表和可视化数据。

-markdownify:将 HTML 转换为 Markdown。

-markdown:用于处理 Markdown 格式的文本。

-langchainhub:不太清楚具体用途,可能与语言处理相关的工具集。

-jsonschema-specifications:用于处理 JSON Schema 规范。

-httpx:现代的 HTTP 客户端库。

-gitpython:用于与 Git 版本控制系统交互。

-favicon:用于处理网站图标。

-faker:用于生成假数据,常用于测试。

-dataclasses-json:用于将 dataclasses 转换为 JSON 和从 JSON 转换回来。

-aiohttp:异步的 HTTP 客户端和服务器库。

-unstructured-client:不太清楚具体用途,可能与处理非结构化数据相关。

-rapidocr_onnxruntime:可能与快速光学字符识别(OCR)和 ONNX 运行时相关。

-pymdown-extensions:用于扩展 Markdown 的功能。

-pydantic_settings:与 pydantic 的设置管理相关。

-openai:用于与 OpenAI 的 API 进行交互。

-langsmith:可能是用于语言相关任务的工具库,具体用途取决于其特定的功能设计,可能涉及语言模型的训练、评估或其他语言处理任务。

-jsonschema:用于验证 JSON 数据是否符合特定的模式或结构定义。

-fastapi:一个快速的现代 Web 框架,基于 Python 的类型提示和异步编程,适用于构建高效的 RESTful APIs。

-unstructured:可能用于处理非结构化数据,例如从各种文档格式中提取信息。

-sse_starlette:可能与在 Starlette 框架中实现服务器发送事件(Server-Sent Events)相关,用于实时数据推送。

-langchain-core:可能是一个语言处理的核心库,可能包含语言模型的交互、知识图谱构建、文本生成等功能。

-altair:一个用于数据可视化的 Python 库,尤其擅长基于声明式语法创建交互式图表。

-streamlit:用于快速创建数据科学和机器学习应用的 Web 应用框架,允许用户以简洁的方式构建交互式界面。

-langchain-text-splitters:可能用于将文本分割成合适的片段,例如在处理长文本时进行分段以便于处理。

-langchain-openai:可能是用于与 OpenAI 的语言模型进行交互的特定实现,提供方便的接口和工具。

-langchain-community:可能是一个由社区贡献的 langchain 相关扩展或工具集,用于增强语言处理能力。

-streamlit-vertical-slider:为 Streamlit 提供垂直滑块组件,用于在应用中进行数值选择或调整。

-streamlit-toggle-switch:为 Streamlit 提供切换开关组件,用于布尔值的选择。

-streamlit-paste-button:可能提供一个粘贴按钮,方便用户在 Streamlit 应用中粘贴内容。

-streamlit-option-menu:为 Streamlit 提供选项菜单组件,用于用户在多个选项中进行选择。

-streamlit-modal:可能提供模态窗口功能,用于在 Streamlit 应用中显示弹窗或对话框。

-streamlit-keyup:可能与在 Streamlit 中处理键盘按键事件相关。

-streamlit-image-coordinates:可能用于获取图像上的坐标信息,例如在图像标注或交互应用中。

-streamlit-feedback:可能用于在 Streamlit 应用中收集用户反馈。

-streamlit-embedcode:可能用于在 Streamlit 应用中嵌入代码片段。

-streamlit-card:可能提供卡片样式的组件,用于在 Streamlit 应用中展示信息。

-streamlit-camera-input-live:可能允许在 Streamlit 应用中获取实时摄像头输入。

-streamlit-antd-components:可能将 Ant Design 的组件引入 Streamlit 应用中。

-streamlit-aggrid:集成 Ag-Grid 组件到 Streamlit 应用中,用于显示和操作表格数据。

-langchain:一个用于构建语言处理应用的工具集,可能包括与语言模型的交互、知识图谱构建、文本生成等功能。

-streamlit-chatbox:为 Streamlit 提供聊天框组件,用于构建聊天应用。

-langchain-experimental:可能包含 langchain 的实验性功能或新的尝试。

-streamlit-faker:可能用于在 Streamlit 应用中生成假数据进行测试或演示。

-markdownlit:可能用于处理 Markdown 格式的文本,可能提供特定的功能或扩展。

-streamlit-extras:可能是 Streamlit 的额外功能集,提供各种增强和扩展。

-langchain-chatchat:可能用于构建聊天机器人或支持聊天交互的语言处理应用。

代码示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值