LeetCode笔记:8. String to Integer (atoi)

问题:

Implement atoi to convert a string to an integer.

Hint: Carefully consider all possible input cases. If you want a challenge, please do not see below and ask yourself what are the possible input cases.

Notes: It is intended for this problem to be specified vaguely (ie, no given input specs). You are responsible to gather all the input requirements up front.

大意:

实现 atoi 来将一个字符串转为一个整型。

暗示:小心考虑所有可能的输入案例。如果你想要挑战,请不要看下面的内容并问问你自己有哪些可能的输入案例。

注意:这个问题特意说的比较模糊(比如,没有给出输入规则)。你需要收集所有输入需求。

思路:

字符串转换成整型本身不难,麻烦的在于考虑到所有可能的情况并作出处理。

可能有的情况有:

    • 开头的负数
    • 开头的正数
  • 0 开头的数字
  • 空格开始的数字
  • 数字直接开头
  • 除了以上的情况外其余开头的都返回0
  • 数字中间夹了其余非数字字符的话就不考虑后面的内容了

基于以上考虑,我的代码考虑了很多情况并进行处理。

代码(Java):

public class Solution {
    public int myAtoi(String str) {
        String intStr = "";
        char[] tempArr = str.toCharArray();
        char[] arr = new char[tempArr.length];
        int num = 0;
        int j = 0;
        boolean ok = false;
        for (; num < tempArr.length; num++) {
            if (ok || tempArr[num] - ' ' != 0) {
                ok = true;
                arr[j] = tempArr[num];
                j++;
            }
        }

        if (arr.length == 0 || !((arr[0] - '0' <= 9 && arr[0] - '0' >= 0) || arr[0] - '-' == 0 || arr[0] - '+' == 0)) return 0;
        int i = 0;
        if (arr[0] - '+' == 0) i = 1;
        for (; i < arr.length; i++) {
            if ((arr[i] - '0' <= 9 && arr[i] - '0' >= 0) || (i == 0 && arr[i] - '-' == 0)) {
                intStr = intStr + arr[i];
            } else break;
        }
        if (intStr.length() == 0) return 0;
        else if (intStr.equals("-")) return 0;
        else if (i > 11) return intStr.charAt(0) - '-' == 0 ? -2147483648 : 2147483647;
        else if (Long.parseLong(intStr) > 2147483647) return 2147483647;
        else if (Long.parseLong(intStr) < -2147483648) return -2147483648;
        else return Integer.valueOf(intStr).intValue();
    }
}

合集:https://github.com/Cloudox/LeetCode-Record
版权所有:http://blog.csdn.net/cloudox_

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
KMP算法是一种字符串匹配算法,用于在一个文本串S内查找一个模式串P的出现位置。它的时间复杂度为O(n+m),其中n为文本串的长度,m为模式串的长度。 KMP算法的核心思想是利用已知信息来避免不必要的字符比较。具体来说,它维护一个next数组,其中next[i]表示当第i个字符匹配失败时,下一次匹配应该从模式串的第next[i]个字符开始。 我们可以通过一个简单的例子来理解KMP算法的思想。假设文本串为S="ababababca",模式串为P="abababca",我们想要在S中查找P的出现位置。 首先,我们可以将P的每个前缀和后缀进行比较,得到next数组: | i | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | --- | - | - | - | - | - | - | - | - | | P | a | b | a | b | a | b | c | a | | next| 0 | 0 | 1 | 2 | 3 | 4 | 0 | 1 | 接下来,我们从S的第一个字符开始匹配P。当S的第七个字符和P的第七个字符匹配失败时,我们可以利用next[6]=4,将P向右移动4个字符,使得P的第五个字符与S的第七个字符对齐。此时,我们可以发现P的前五个字符和S的前五个字符已经匹配成功了。因此,我们可以继续从S的第六个字符开始匹配P。 当S的第十个字符和P的第八个字符匹配失败时,我们可以利用next[7]=1,将P向右移动一个字符,使得P的第一个字符和S的第十个字符对齐。此时,我们可以发现P的前一个字符和S的第十个字符已经匹配成功了。因此,我们可以继续从S的第十一个字符开始匹配P。 最终,我们可以发现P出现在S的第二个位置。 下面是KMP算法的C++代码实现:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值