题目描述
题解
因为这里打字机的特殊性质,所以trie树可以边扫边建。
注意存一下father因为B操作是需要跳回去的。
建好fail指针之后,每次询问其实就是判断y这个单词里的节点有多少个指针指向了x。其实可以逆向思维,就是求fail树中x的子树有哪些是在y这个单词中。这一点是通过“fail树的神奇性质”想到的。
求出fail树的dfs序。
离线之后按照y排序,将y单词所有的节点权值都+1,然后对于每一个x,求子树的权值和就可以了。又是由于这个打字机的特殊性质,字符串的编号都是递增的,我们可以边扫大字符串边进行维护,打出新的字母就加,删除就减,遇到p说明到了一个新的字符串,那么就可以查询了。
维护用树状数组简单又方便。
具体看代码。
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
const int max_n=1e5+5;
const int max_e=max_n*2;
int n,m,len,N,sz,num;
char s[max_n];
int tot,point[max_n],next[max_e],v[max_e];
int pos[max_n],ch[max_n][30],fail[max_n],father[max_n];
int in[max_n],out[max_n];
int C[max_n];
int ans[max_n];
struct hp{
int x,y,num;
}a[max_n];
queue <int> q;
inline int read(){
int x=0; char ch=getchar();
while (ch<'0'||ch>'9') ch=getchar();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=getchar();
return x;
}
inline int cmp(hp a,hp b){
return a.y<b.y;
}
inline void addedge(int x,int y){
++tot; next[tot]=point[x]; point[x]=tot; v[tot]=y;
++tot; next[tot]=point[y]; point[y]=tot; v[tot]=x;
}
inline void dfs(int x,int fa){
in[x]=++N;
for (int i=point[x];i;i=next[i])
if (v[i]!=fa)
dfs(v[i],x);
out[x]=N;
}
inline void make_trie(){
int now=0;
for (int i=0;i<len;++i){
if (s[i]>='a'&&s[i]<='z'){
int x=s[i]-'a';
if (!ch[now][x])
ch[now][x]=++sz;
father[ch[now][x]]=now;
now=ch[now][x];
}
else if (s[i]=='B')
now=father[now];
else if (s[i]=='P')
pos[++num]=now;
}
}
inline void make_fail(){
while (!q.empty()) q.pop();
for (int i=0;i<26;++i)
if (ch[0][i])
q.push(ch[0][i]),addedge(0,ch[0][i]);
while (!q.empty()){
int now=q.front(); q.pop();
for (int i=0;i<26;++i){
if (!ch[now][i]){
ch[now][i]=ch[fail[now]][i];
continue;
}
int x=ch[now][i];
fail[x]=ch[fail[now]][i];
addedge(x,fail[x]);
q.push(x);
}
}
}
inline void add(int loc,int val){
for (int i=loc;i<=N;i+=i&(-i))
C[i]+=val;
}
inline int query(int loc){
int ans=0;
for (int i=loc;i>=1;i-=i&(-i))
ans+=C[i];
return ans;
}
int main(){
gets(s);
len=strlen(s);
make_trie();
make_fail();
dfs(0,-1);
m=read();
for (int i=1;i<=m;++i)
a[i].x=read(),a[i].y=read(),a[i].num=i;
sort(a+1,a+m+1,cmp);
int now=0,cnt=0,k=1;
for (int i=0;i<len;++i){
if (s[i]>='a'&&s[i]<='z'){
int x=s[i]-'a';
now=ch[now][x];
add(in[now],1);
}
else if (s[i]=='B'){
add(in[now],-1);
now=father[now];
}
else if (s[i]=='P'){
++cnt;
if (cnt==a[k].y){
for (int j=k;a[j].y==cnt;++j){
int ans1=query(in[pos[a[j].x]]-1);
int ans2=query(out[pos[a[j].x]]);
ans[a[j].num]=ans2-ans1;
k=j+1;
}
}
}
}
for (int i=1;i<=m;++i)
printf("%d\n",ans[i]);
}
总结
Fail树的神奇性质要利用好;这一点其实想到了,但是用数据结构高效地维护没有做到,看来知识还是要全面和融汇贯通啊。