[POJ1390]Blocks(dp)

245 篇文章 0 订阅

题目描述

传送门

题解

这道dp想了很久都没有思路。这种消来消去的题目感觉用dp没法搞吖。
果然我还是太弱。

记忆化搜索的方法是看了网上的题解的。不过还是盯着那个状态看了很久才勉强理解。f(l,r,k)表示将l到r这一段区间并且连同r后面的k个和r相同颜色的方块都消完的最大得分。那么 f(l,r,k)=max{f(l,r1,0)+(k+1)2,f(l,i,k+1)+f(i+1,r1,0)}
实际上我认为这个转移很难理解。不过不想那么多的话也许更好想一点,其实就是分类讨论, f(l,r1,0)+(k+1)2 表示将k+1个连着一起消掉, f(l,i,k+1)+f(i+1,r1,0) 则表示分成两部分消掉。

但是TA的方法更稳一点,而且更好理解。 f(l,r,k) 要求l,r颜色相同,表示将l~r这一段消到只剩k个和lr颜色相同的点的最大得分, g(l,r) 表示将lr这一段全部消去的最大得分。
那么 f(l,r,k)=max{f(l,r,k),f(l,i,k1)+g(i+1,r1)} g(l,r)=max{f(l,r,k)+kk,g(l,i)+g(i+1,r)}
时间复杂度 O(n4) ,不过是可以过的。

代码

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 205

int T,n,Case;
int color[N],f[N][N][N];

int dp(int l,int r,int k)
{
    if (l>r) return 0;
    if (f[l][r][k]) return f[l][r][k];
    f[l][r][k]=dp(l,r-1,0)+(k+1)*(k+1);
    for (int i=r-1;i>=l;--i)
        if (color[i]==color[r])
            f[l][r][k]=max(f[l][r][k],dp(l,i,k+1)+dp(i+1,r-1,0));
    return f[l][r][k];
}
int main()
{
    scanf("%d",&T);
    while (T--)
    {
        scanf("%d",&n);
        for (int i=1;i<=n;++i) scanf("%d",&color[i]);
        memset(f,0,sizeof(f));
        printf("Case %d: %d\n",++Case,dp(1,n,0));
    }
}

Orz TA

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 205

int T,n,Case;
int color[N],tot[N][N],f[N][N][N],g[N][N];

void clear()
{
    n=0;
    memset(f,128,sizeof(f)); memset(g,0,sizeof(g));
    memset(tot,0,sizeof(tot));memset(color,0,sizeof(color));
}
int main()
{
    scanf("%d",&T);
    while (T--)
    {
        clear();
        scanf("%d",&n);
        for (int i=1;i<=n;++i) scanf("%d",&color[i]);
        for (int i=1;i<=n;++i)
            for (int j=i+1;j<=n;++j)
                if (color[i]==color[j])
                    for (int k=i;k<=j;++k)
                        if (color[k]==color[i]) tot[i][j]++;

        memset(f,128,sizeof(f)); memset(g,0,sizeof(g));
        for (int i=1;i<=n;++i) f[i][i][0]=1,f[i][i][1]=0,g[i][i]=1;
        for (int len=2;len<=n;++len)
            for (int l=1;l<=n-len+1;++l)
            {
                int r=l+len-1;
                if (color[l]==color[r])
                    for (int k=1;k<=tot[l][r];++k)
                    {
                        for (int i=l;i<r;++i)
                            f[l][r][k]=max(f[l][r][k],f[l][i][k-1]+g[i+1][r-1]);
                        g[l][r]=max(g[l][r],f[l][r][k]+k*k);
                    }
                for (int i=l;i<r;++i)
                    g[l][r]=max(g[l][r],g[l][i]+g[i+1][r]);
                f[l][r][0]=g[l][r];
            }
        printf("Case %d: %d\n",++Case,g[1][n]);
    }
}

总结

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值