[BZOJ2653]middle(二分+主席树)

题目描述

传送门

题解

可以发现所有满足条件的中位数是具有单调性的,也就是说,如果 M<M ,且 M 为合法的中位数,那么M也为合法的中位数。这样说并不准确,因为 M 有可能根本就不在子序列中,但是仍然可以利用这种单调性二分,因为最终找到的中位数一定是合法的。
这里利用了一个非常厉害的技巧:根据题目中对中位数的定义,我们发现如果序列长度为奇数,中位数即为最中间的那个数,如果序列长度为偶数,那么中位数为中间的两个数更靠后的那个数。那么这样的话,假设我们要判定 M 是否为合法的中位数,只需要将M的数的权定为1,将 <M <script type="math/tex" id="MathJax-Element-7"> 0 ,也就说明, M 是合法的中位数,一定存在一种方案,使这个区间的某一个子序列的中位数是M
怎样维护区间最大连续子序列和呢?实际上线段树就可以实现,只需要维护 sum,maxl,maxr 分别表示区间和,从左端起最大连续子序列和,从右端起最大连续子序列和。那么满足条件 [a,b][c,d] 的最长连续子序列和即为 sum(b,c)+maxl(a,b)+maxr(c,d)
可是如果每一次二分都重构线段树的话时间是无法承受的,但是我们想到从 1 1的变化实际上是通过 M 的移动产生的。那么我们可以可持久化线段树。将s从小到大排序,首先第一棵线段树所有的节点的权都为 1 ,然后第二棵线段树就是在第一棵的基础上将排名为第一的点的位置的权修改为1,这就相当于是当 M 为第二个点的时候的线段树了。每二分到一个点,只需要在当前点为M时的线段树上查询就可以了。
最坏情况下时间复杂度 O(nlog3n)
非常好的一道思路题,被Yveh教做人。

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define N 20005

int n,Q,a,b,c,d,ans,sz;
struct hp{int val,id;}s[N];
int root[N],q[5];
int sum[N*20],lmax[N*20],rmax[N*20],ls[N*20],rs[N*20];

int cmp(hp a,hp b)
{
    return a.val<b.val;
}
void update(int now)
{
    sum[now]=sum[ls[now]]+sum[rs[now]];
    lmax[now]=max(lmax[ls[now]],sum[ls[now]]+lmax[rs[now]]);
    rmax[now]=max(rmax[rs[now]],sum[rs[now]]+rmax[ls[now]]);
}
void build(int &now,int l,int r)
{
    int mid=(l+r)>>1;now=++sz;
    if (l==r)
    {
        sum[now]=lmax[now]=rmax[now]=1;
        return;
    }
    build(ls[now],l,mid);
    build(rs[now],mid+1,r);
    update(now);
}
void change(int &now,int l,int r,int x)
{
    int mid=(l+r)>>1;
    sum[++sz]=sum[now],ls[sz]=ls[now],rs[sz]=rs[now];now=sz;
    if (l==r)
    {
        sum[now]=-1;lmax[now]=max(0,sum[now]);rmax[now]=max(0,sum[now]);
        return;
    }
    if (x<=mid) change(ls[now],l,mid,x);
    else change(rs[now],mid+1,r,x);
    update(now);
}
int query_s(int now,int l,int r,int lrange,int rrange)
{
    if (lrange>rrange) return 0;
    int mid=(l+r)>>1,ans=0;
    if (lrange<=l&&r<=rrange) return sum[now];
    if (lrange<=mid) ans+=query_s(ls[now],l,mid,lrange,rrange);
    if (mid+1<=rrange) ans+=query_s(rs[now],mid+1,r,lrange,rrange);
    return ans;
}
int query_r(int now,int l,int r,int lrange,int rrange)
{
    if (lrange>rrange) return 0;
    int mid=(l+r)>>1,ans=0;
    if (lrange<=l&&r<=rrange) return rmax[now];
    if (mid+1<=rrange)
        ans=query_r(rs[now],mid+1,r,lrange,rrange);
    if (lrange<=mid)
    {
        int l_maxr=query_r(ls[now],l,mid,lrange,rrange);
        int r_sum=query_s(rs[now],mid+1,r,mid+1,rrange);
        ans=max(ans,l_maxr+r_sum);
    }
    return ans;
}
int query_l(int now,int l,int r,int lrange,int rrange)
{
    if (lrange>rrange) return 0;
    int mid=(l+r)>>1,ans=0;
    if (lrange<=l&&r<=rrange) return lmax[now];
    if (lrange<=mid)
        ans=query_l(ls[now],l,mid,lrange,rrange);
    if (mid+1<=rrange)
    {
        int r_maxl=query_l(rs[now],mid+1,r,lrange,rrange);
        int l_sum=query_s(ls[now],l,mid,lrange,mid);
        ans=max(ans,r_maxl+l_sum);
    }
    return ans;
}
bool check(int mid)
{
    int ab=query_r(root[mid],1,n,a,b-1);
    int cd=query_l(root[mid],1,n,c+1,d);
    int bc=query_s(root[mid],1,n,b,c);
    if (ab+bc+cd>=0) return true;
    else return false;
}
int find()
{
    int l=1,r=n,mid,ans=0;
    while (l<=r)
    {
        mid=(l+r)>>1;
        if (check(mid)) ans=mid,l=mid+1;
        else r=mid-1;
    }
    return ans;
}
int main()
{
    scanf("%d",&n);
    for (int i=1;i<=n;++i) scanf("%d",&s[i].val),s[i].id=i;
    sort(s+1,s+n+1,cmp);
    build(root[1],1,n);
    for (int i=2;i<=n;++i)
    {
        root[i]=root[i-1];
        change(root[i],1,n,s[i-1].id);
    }
    scanf("%d",&Q);
    for (int i=1;i<=Q;++i)
    {
        scanf("%d%d%d%d",&a,&b,&c,&d);
        q[0]=(a+ans)%n,q[1]=(b+ans)%n,q[2]=(c+ans)%n,q[3]=(d+ans)%n;
        sort(q,q+4);
        a=q[0]+1,b=q[1]+1,c=q[2]+1,d=q[3]+1;
        ans=s[find()].val;
        printf("%d\n",ans);
    }
}

总结

①中位数的套路还是很深啊。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值