[BZOJ2095][Poi2010]Bridges(二分+最大流+欧拉图)

72 篇文章 0 订阅
55 篇文章 0 订阅
这篇博客介绍了一个基于二分搜索和最大流的解决方案来寻找给定无向图中具有最小价值的欧拉回路。题目要求图中的每条边的正向和反向行走价值不同。文章首先介绍了判断欧拉回路的条件,包括图的强连通性和所有点的入度等于出度。接着,作者阐述了如何通过构建网络流图并运行最大流算法来判断是否存在满足条件的欧拉回路。当最大流达到满流时,意味着存在这样的欧拉回路。由于题目保证了图的强连通性,所以无需额外检查该条件。最后,博客提供了解决问题的代码实现。
摘要由CSDN通过智能技术生成

题目描述

传送门

题目大意:n个点m条边的无向图,每一条边正向走和反向走的价值是不同的。求图中的一个欧拉回路,并且走的价值的最大值最小。

题解

很容易想到二分答案,关键是怎么判定
判断欧拉回路的条件有两个:①整个图强连通②每个点的入度=出度
首先如果图中的某一条边断掉了那么无解
然后能走的边有一些是有向边,有一些是无向边,这就是一个混合图的欧拉回路判定问题
首先将每一条无向边随便规定一个方向,求出每一个点的权d(i)=出度-入度,若某一个点的d为奇数那么无解
然后建一个网络流图,先将原图中所有的无向边保留,容量为1
对于每一个点i,若d(i)>0,那么连边s->i,d(i)/2,若d(i)<0,那么连边i->t,-d(i)/2
然后在这个网络流图上跑最大流,若从s连出的边都满流,那么有解,否则无解
如果满流有解的话,实际上就是将网络流图中满流的有向边都在原图中反向,就存在了一条欧拉回路。因为边的容量为d(i)/2,相当于是将一半的入度变成了出度,最终每个点出度-入度正好为0
不过这题比较玄的一点是保证了图的强连通,并且在边不全的情况下如果满足了每一个点的出度=入度那么整个图也一定是强连通的,所以这个就不用判断了

代码

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
#define N 1010
#define E 20010
#define inf 1000000000

int n,m,Max,scc,top,dfs_clock,s,t,maxflow,ans;
struct data{int x,y,a,b;}e[E];
int tot,point[N],nxt[E],v[E],remain[E];
int in[N],out[N],deep[N],last[N],cur[N],num[N];
queue <int> q;

void addedge(int x,int y,int cap)
{
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; remain[tot]=cap;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x; remain[tot]=0;
}
void bfs(int t)
{
    for (int i=1;i<=t;++i) deep[i]=t;
    deep[t]=0;
    for (int i=1;i<=t;++i) cur[i]=point[i];
    q.push(t);
    while (!q.empty())
    {
        int now=q.front();q.pop();
        for (int i=point[now];i!=-1;i=nxt[i])
            if (deep[v[i]]==t&&remain[i^1])
            {
                deep[v[i]]=deep[now]+1;
                q.push(v[i]);
            }
    }
}
int addflow(int s,int t)
{
    int now=t,ans=inf;
    while (now!=s)
    {
        ans=min(ans,remain[last[now]]);
        now=v[last[now]^1];
    }
    now=t;
    while (now!=s)
    {
        remain[last[now]]-=ans;
        remain[last[now]^1]+=ans;
        now=v[last[now]^1];
    }
    return ans;
}
void isap(int s,int t)
{
    bfs(t);
    for (int i=1;i<=t;++i) ++num[deep[i]];

    int now=s;
    while (deep[s]<t)
    {
        if (now==t)
        {
            maxflow+=addflow(s,t);
            now=s;
        }
        bool has_find=0;
        for (int i=cur[now];i!=-1;i=nxt[i])
        {
            cur[now]=i;
            if (deep[v[i]]+1==deep[now]&&remain[i])
            {
                has_find=1;
                last[v[i]]=i;
                now=v[i];
                break;
            }
        }
        if (!has_find)
        {
            int minn=t-1;
            for (int i=point[now];i!=-1;i=nxt[i])
                if (remain[i]) minn=min(minn,deep[v[i]]);
            if (!(--num[deep[now]])) break;
            ++num[deep[now]=minn+1];
            cur[now]=point[now];
            if (now!=s) now=v[last[now]^1];
        }
    }
}
bool check(int mid)
{
    tot=-1;memset(point,-1,sizeof(point));
    memset(num,0,sizeof(num));
    memset(in,0,sizeof(in));memset(out,0,sizeof(out));
    s=n+1,t=s+1;
    for (int i=1;i<=m;++i)
    {
        if (e[i].a>mid&&e[i].b>mid) return 0;
        if (e[i].a<=mid&&e[i].b<=mid)
            addedge(e[i].x,e[i].y,1),++out[e[i].x],++in[e[i].y];
        else
        {
            if (e[i].a<=mid) ++out[e[i].x],++in[e[i].y];
            else if (e[i].b<=mid) ++in[e[i].x],++out[e[i].y];
        }
    }
    int sum=0;
    for (int i=1;i<=n;++i)
    {
        int d=out[i]-in[i];
        if (d&1) return 0;
        if (d>0) addedge(s,i,d/2),sum+=d/2;
        if (d<0) addedge(i,t,-d/2);
    }
    maxflow=0;isap(s,t);
    return sum==maxflow;
}
int find()
{
    int l=1,r=Max,mid,ans=-1;
    while (l<=r)
    {
        mid=(l+r)>>1;
        if (check(mid)) ans=mid,r=mid-1;
        else l=mid+1;
    }
    return ans;
}
int main()
{
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;++i)
    {
        scanf("%d%d%d%d",&e[i].x,&e[i].y,&e[i].a,&e[i].b);
        Max=max(Max,e[i].a);Max=max(Max,e[i].b);
    }
    ans=find();
    if (ans==-1) puts("NIE");
    else printf("%d\n",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值