题目描述
题目大意:给出一个n个点m条边的无向图,要求选一些边,使得对于 1≤i≤d 的点i和n-i+1的点连通,并且边权和最小。
题解
f(i,s)表示和点i连通的点状态为s的最小边权,用斯坦纳树求出f
g(s)表示连通的状态为s的最小边权,将s拆分成两个状态t和s-t,只需要check一下这两个状态中i和n-i+1的点分别对应即可转移
代码
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
using namespace std;
#define N 20004
int n,m,d,inf;
int tot,point[N],nxt[N],v[N],c[N];
int f[N][1<<8],g[1<<8];
bool vis[N];
queue <int> q;
void add(int x,int y,int z)
{
++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y; c[tot]=z;
}
void spfa(int sta)
{
for (int i=1;i<=n;++i)
if (f[i][sta]<inf) q.push(i);
while (!q.empty())
{
int now=q.front();q.pop();
vis[now]=0;
for (int i=point[now];i;i=nxt[i])
if (f[v[i]][sta]>f[now][sta]+c[i])
{
f[v[i]][sta]=f[now][sta]+c[i];
if (!vis[v[i]]) vis[v[i]]=1,q.push(v[i]);
}
}
}
bool check(int sta)
{
for (int i=0;i<d;++i)
if (sta>>i&1)
{
if (!(sta>>(d+i)&1)) return 0;
}
return 1;
}
int main()
{
scanf("%d%d%d",&n,&m,&d);
for (int i=1;i<=m;++i)
{
int x,y,z;scanf("%d%d%d",&x,&y,&z);
add(x,y,z),add(y,x,z);
}
memset(f,127/3,sizeof(f));memset(g,127/3,sizeof(g));inf=f[0][0];
for (int i=1;i<=d;++i) f[i][1<<(i-1)]=0,f[n-i+1][1<<(d+i-1)]=0;
for (int i=0;i<1<<(d+d);++i)
{
for (int j=1;j<=n;++j)
for (int s=i&(i-1);s;s=(s-1)&i)
f[j][i]=min(f[j][i],f[j][s]+f[j][i-s]);
spfa(i);
for (int j=1;j<=n;++j) g[i]=min(g[i],f[j][i]);
}
for (int i=0;i<1<<(d+d);++i)
for (int s=i&(i-1);s;s=(s-1)&i)
if (check(s)&&check(i-s))
g[i]=min(g[i],g[s]+g[i-s]);
if (g[(1<<(d+d))-1]<inf) printf("%d\n",g[(1<<(d+d))-1]);
else puts("-1");
}