题意简述
对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边的权值和。
数据范围
1≤d≤4
2d≤n≤104
0≤m≤104
1≤ui,vi≤n
1≤wi≤1000
思路
DP出包含
2d
个点的斯坦纳树。
然后再做一次子集DP,因为有可能不成对的点不联通。
g[S]
表示点对联通性为
S
的最小代价。
答案是
g[2d−1]
代码
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
#define MAXM 10010
#define MAXN 10010
#define INF 0x3f3f3f3f
struct edge{
int s,t,cap,next;
}e[MAXM<<1];
int head[MAXN],cnt;
void addedge(int s,int t,int cap)
{
e[cnt].s=s;e[cnt].t=t;e[cnt].cap=cap;e[cnt].next=head[s];head[s]=cnt++;
e[cnt].s=t;e[cnt].t=s;e[cnt].cap=cap;e[cnt].next=head[t];head[t]=cnt++;
}
int n,m,d,lim,u,v,w;
int f[260][MAXN],g[20];
queue<int> q;
bool inq[MAXN];
bool update(int M,int i,int val)
{
if (val<f[M][i])
{
f[M][i]=val;
return true;
}
return false;
}
void spfa(int M)
{
while (!q.empty())
{
int tmp=q.front();
q.pop();
for (int i=head[tmp];i!=-1;i=e[i].next)
if (update(M,e[i].t,f[M][tmp]+e[i].cap))
if (!inq[e[i].t])
{
q.push(e[i].t);
inq[e[i].t]=1;
}
inq[tmp]=0;
}
}
void dp()
{
for (int M=1;M<lim;M++)
{
for (int i=1;i<=n;i++)
{
for (int S=M&(M-1);S;S=(S-1)&M)
update(M,i,f[S][i]+f[M^S][i]);
if (f[M][i]!=INF)
{
q.push(i);
inq[i]=1;
}
}
spfa(M);
}
}
int main()
{
scanf("%d%d%d",&n,&m,&d);
memset(head,0xff,sizeof(head));
cnt=0;
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
}
memset(f,0x3f,sizeof(f));
for (int i=1;i<=d;i++)
{
f[1<<i-1][i]=0;
f[1<<d+i-1][n-i+1]=0;
}
lim=1<<(d<<1);
dp();
memset(g,0x3f,sizeof(g));
lim=1<<d;
for (int M=1;M<lim;M++)
for (int i=1;i<=n;i++)
g[M]=min(g[M],f[M^(M<<d)][i]);
for (int M=1;M<lim;M++)
for (int S=M&(M-1);S;S=(S-1)&M)
g[M]=min(g[M],g[S]+g[M^S]);
printf("%d",g[lim-1]==INF ? -1 : g[lim-1]);
return 0;
}