[BZOJ4774]修路

题意简述

对于边带权的无向图 G = (V, E),请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边的权值和。

数据范围

1d4
2dn104
0m104
1ui,vin
1wi1000

思路

DP出包含 2d 个点的斯坦纳树。
然后再做一次子集DP,因为有可能不成对的点不联通。
g[S] 表示点对联通性为 S 的最小代价。
g[S]=min(g[S],g[sub]+g[Sxorsub])
答案是 g[2d1]

代码

#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
#define MAXM 10010
#define MAXN 10010
#define INF 0x3f3f3f3f
struct edge{
    int s,t,cap,next;
}e[MAXM<<1];
int head[MAXN],cnt;
void addedge(int s,int t,int cap)
{
    e[cnt].s=s;e[cnt].t=t;e[cnt].cap=cap;e[cnt].next=head[s];head[s]=cnt++;
    e[cnt].s=t;e[cnt].t=s;e[cnt].cap=cap;e[cnt].next=head[t];head[t]=cnt++;
}
int n,m,d,lim,u,v,w;
int f[260][MAXN],g[20];
queue<int> q;
bool inq[MAXN]; 
bool update(int M,int i,int val)
{
    if (val<f[M][i])
    {
        f[M][i]=val;
        return true;
    }
    return false;
}
void spfa(int M)
{
    while (!q.empty())
    {
        int tmp=q.front();
        q.pop();
        for (int i=head[tmp];i!=-1;i=e[i].next)
            if (update(M,e[i].t,f[M][tmp]+e[i].cap))
                if (!inq[e[i].t])
                {
                    q.push(e[i].t);
                    inq[e[i].t]=1;
                }
        inq[tmp]=0;
    }
}
void dp()
{
    for (int M=1;M<lim;M++)
    {
        for (int i=1;i<=n;i++)
        {
            for (int S=M&(M-1);S;S=(S-1)&M)
                update(M,i,f[S][i]+f[M^S][i]);
            if (f[M][i]!=INF)
            {
                q.push(i);
                inq[i]=1;
            }
        }
        spfa(M);
    }
}
int main()
{
    scanf("%d%d%d",&n,&m,&d);
    memset(head,0xff,sizeof(head));
    cnt=0;
    for (int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        addedge(u,v,w);
    }
    memset(f,0x3f,sizeof(f));
    for (int i=1;i<=d;i++)
    {
        f[1<<i-1][i]=0;
        f[1<<d+i-1][n-i+1]=0;
    }
    lim=1<<(d<<1);
    dp();
    memset(g,0x3f,sizeof(g));
    lim=1<<d;
    for (int M=1;M<lim;M++)
        for (int i=1;i<=n;i++)
            g[M]=min(g[M],f[M^(M<<d)][i]);
    for (int M=1;M<lim;M++)
        for (int S=M&(M-1);S;S=(S-1)&M)
            g[M]=min(g[M],g[S]+g[M^S]);
    printf("%d",g[lim-1]==INF ? -1 : g[lim-1]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值