线索化二叉树
在有n个结点的二叉链表中,每个结点有指向左右2个孩子的指针域,所以有2n个指针域,而n个结点的二叉树一共有n-1条分支线(根节点没有),也就是说,其实存在2n-(n-1) = n+1 个空指针域。空间十分浪费。在另一方面,我们对二叉树做中序遍历时,我只知道每个树结点的左右孩子是谁,却不知道该树结点的前驱和后继是谁。要想知道必须重新遍历一遍。
考虑在创建时就记住这些前驱和后继,那将会省去很多时间。如果树结点左右孩子都不为NULL ,如果采用中序遍历,那么该结点的前驱结点是不是左孩子,后继结点是不是右孩子?这就是为什么我们要采用中序遍历的形式来对二叉树进行线索化,那么我需要将孩子结点为NULL的树结点 空间利用起来!因为子节点虽然为NULL,但是都有前驱和后继结点,那么我们可以考虑将 lchild 放树节点的前驱结点,rchild放树结点的后继结点。那么这里我们是否要考虑区分lchild,rchild 是原有的子节点还是我们后续线索化添加的前驱后继结点呢?所以要在线索二叉树结点的数据结构都要体现呗。我们把这种指向前驱和后继的指针称为线索,加上线索的二叉链表称为线索链表,相应的的二叉树就称为线索二叉树(Threaded Binary Tree)。
思路:如何线索化二叉树呢?采用中序遍历二叉树访问每一个树结点的时,只知道当前结点,如何知道前驱结点呢?能否考虑将刚刚访问的结点(pre)保存下来,每次访问树结点的时候,发现左孩子结点为NULL,就将其线索化!它的前驱结点是不是pre结点呢?!tree->lchild = pre;那个刚刚访问的结点 (pre)的右孩子结点 为NULL,那么将其线索化 pre 它的后继结点是不是当前结点呢?!pre->rchild = tree;
代码实现:
节点定义:
//节点存储结构
class Node {
String data; //数据域
Node left; //左指针域
Node right; //右指针域
boolean isLeftThread = false; //左指针域类型 false:指向子节点、true:前驱或后继线索
boolean isRightThread = false; //右指针域类型 false:指向子节点、true:前驱或后继线索
Node(String data) {
this.data = data;
}
}
构建线索化树:
public class LinearBinaryTree {
private Node preNode; //线索化时记录前一个节点
//节点存储结构
static class Node {
String data; //数据域
Node left; //左指针域
Node right; //右指针域
boolean isLeftThread = false; //左指针域类型 false:指向子节点、true:前驱或后继线索
boolean isRightThread = false; //右指针域类型 false:指向子节点、true:前驱或后继线索
Node(String data) {
this.data = data;
}
}
/**
* 通过数组构造一个二叉树(完全二叉树) //递归创建二叉树
* @param array
* @param index
* @return
*/
static Node createBinaryTree(String[] array, int index) {
Node node = null;
if(index < array.length) {
node = new Node(array[index]);
node.left = createBinaryTree(array, index * 2 + 1);
node.right = createBinaryTree(array, index * 2 + 2);
}
return node;
}
/**
* 中序线索化二叉树
* @param node 节点
*/
void inThreadOrder(Node node) {
if(node == null) {
return;
}
//处理左子树
inThreadOrder(node.left);
//左指针为空,将左指针指向前驱节点
if(node.left == null) {
node.left = preNode;
node.isLeftThread = true;
}
//前一个节点的后继节点指向当前节点
if(preNode != null && preNode.right == null) {
preNode.right = node;
preNode.isRightThread = true;
}
preNode = node;
//处理右子树
inThreadOrder(node.right);
}
/**
* 中序遍历线索二叉树,按照后继方式遍历(思路:找到最左子节点开始)
* @param node
*/
void inThreadList(Node node) {
//1、找中序遍历方式开始的节点
while(node != null && !node.isLeftThread) {
node = node.left;
}
while(node != null) {
System.out.print(node.data + ", ");
//如果右指针是线索
if(node.isRightThread) {
node = node.right;
} else { //如果右指针不是线索,找到右子树开始的节点
node = node.right;
while(node != null && !node.isLeftThread) {
node = node.left;
}
}
}
}
/**
* 中序遍历线索二叉树,按照前驱方式遍历(思路:找到最右子节点开始倒序遍历)
* @param node
*/
void inPreThreadList(Node node) {
//1、找最后一个节点
while(node.right != null && !node.isRightThread) {
node = node.right;
}
while(node != null) {
System.out.print(node.data + ", ");
//如果左指针是线索
if(node.isLeftThread) {
node = node.left;
} else { //如果左指针不是线索,找到左子树开始的节点
node = node.left;
while(node.right != null && !node.isRightThread) {
node = node.right;
}
}
}
}
/**
* 前序线索化二叉树
* @param node
*/
void preThreadOrder(Node node) {
if(node == null) {
return;
}
//左指针为空,将左指针指向前驱节点
if(node.left == null) {
node.left = preNode;
node.isLeftThread = true;
}
//前一个节点的后继节点指向当前节点
if(preNode != null && preNode.right == null) {
preNode.right = node;
preNode.isRightThread = true;
}
preNode = node;
//处理左子树
if(!node.isLeftThread) {
preThreadOrder(node.left);
}
//处理右子树
if(!node.isRightThread) {
preThreadOrder(node.right);
}
}
/**
* 前序遍历线索二叉树(按照后继线索遍历)
* @param node
*/
void preThreadList(Node node) {
while(node != null) {
while(!node.isLeftThread) {
System.out.print(node.data + ", ");
node = node.left;
}
System.out.print(node.data + ", ");
node = node.right;
}
}
public static void main(String[] args) {
String[] array = {"1", "2", "6", "9", "7", "14", "43", "8"};
Node root = createBinaryTree(array, 0);
LinearBinaryTree tree = new LinearBinaryTree();
tree.inThreadOrder(root);
System.out.println("中序按后继节点遍历线索二叉树结果:");
tree.inThreadList(root);
System.out.println("\n中序按前驱节点遍历线索二叉树结果:");
tree.inPreThreadList(root);
Node root2 = createBinaryTree(array, 0);
LinearBinaryTree tree2 = new LinearBinaryTree();
tree2.preThreadOrder(root2);
tree2.preNode = null;
System.out.println("\n前序按后继节点遍历线索二叉树结果:");
tree.preThreadList(root2);
}
}