数据分析--用R语言预测离职(下)

数据分析–用R语言预测离职(下)

接上一篇~

接下来我们探索离职和其他分类变量的关系~

> library(scales)
> k1 <- ggplot(attr.df, aes(x=Gender,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k2 <- ggplot(attr.df, aes(x=BusinessTravel,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k3 <- ggplot(attr.df, aes(x=Department,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k4 <- ggplot(attr.df, aes(x=EducationField,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k5 <- ggplot(attr.df, aes(x=MaritalStatus,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k6 <- ggplot(attr.df, aes(x=OverTime,fill=Attrition))+
+   geom_bar(position = "fill")+
+   labs(y="Percentage")+scale_y_continuous(labels = percent)
> k7 <- ggplot(attr.df, aes(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值