TensorFlow2.0 读取与展示

该博客介绍了如何利用TensorFlow 2.5版本进行图像识别任务,首先展示了各库的版本信息,然后加载并分割了Fashion MNIST数据集,将训练集划分为训练和验证集。接着,演示了如何显示单张和多张图像,并提供了显示函数。博客主要关注机器学习中的图像处理和模型训练预处理步骤。
摘要由CSDN通过智能技术生成
一.引入库
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf

# 查看相应版本信息
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, pd, sklearn, tf, tf.keras:
    print(module.__name__, module.__version__)
2.5.0
sys.version_info(major=3, minor=7, micro=0, releaselevel='final', serial=0)
matplotlib 3.0.2
numpy 1.19.5
pandas 0.23.4
sklearn 0.20.2
tensorflow 2.5.0
tensorflow.keras 2.5.0
二.导入数据集
fashion_mnist = tf.keras.datasets.fashion_mnist
三.训练集和测试集 拆分
(x_train_all, y_train_all), (x_test, y_test) = fashion_mnist.load_data()

# 训练集拆分为训练集和验证集
x_valid, x_train = x_train_all[:5000], x_train_all[5000:]
y_valid, y_train = y_train_all[:5000], y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
四.展示图像
# 显示单张图片
def show_single_image(img_arr):
    # cmap 定义颜色图谱,默认rgb,本来就是黑白图片 用二进制(binary)显示就行
    plt.imshow(img_arr, cmap="binary")
    plt.show()


show_single_image(x_train[0])


# 显示多张图片
def show_imgs(n_rows, n_cols, x_data, y_data, class_names):
    assert len(x_data) == len(y_data)
    assert n_rows * n_cols < len(x_data)
    plt.figure(figsize=(n_cols * 1.4, n_rows * 1.6))
    for row in range(n_rows):
        for col in range(n_cols):
            index = n_cols * row + col
            plt.subplot(n_rows, n_cols, index + 1)
            plt.imshow(x_data[index], cmap="binary", interpolation="nearest")
            # 关闭坐标系
            plt.axis("off")
            plt.title(class_names[y_data[index]])
    plt.show()


class_names = ["T-shirt", "Trouser", "Pullover", "Dress", "Coat", "Sandal", "Shirt",
               "Sneaker", "Bag", "Ankle boot"
               ]
show_imgs(3, 5, x_train, y_train, class_names)

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cocktail_py

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值