自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(87)
  • 资源 (2)
  • 收藏
  • 关注

原创 深度学习-Tensorflow2.2-图像处理{10}-图像定位/优化/图运算/及GPU优化等-22

常见图像处理的任务图像定位图像定位网络架构Oxford-IIIT数据集

2020-11-27 00:44:35 15

原创 深度学习-Tensorflow2.2-模型保存与恢复{9}-保存与恢复-21

模型保存(tf.keras保存模型)保存Tf.Keras 模型保存为 HDF5 文件Keras 使用了 h5py Python 包。h5py 是 Keras 的依赖项,应默认被安装保存/加载整个模型不建议使用 pickle 或 cPickle 来保存模型。使用 model.save(‘path/to/my_model.h5’) 将整个模型保存到单个 HDF5 文件中。包括以下内容:· 模型的结构,允许重新创建模型· 模型的权重· 训练配置项(损失函数,优化器)·

2020-11-22 21:34:29 29

原创 深度学习-Tensorflow2.2-多分类{8}-多输出模型实例-20

``

2020-11-22 00:55:53 23

原创 深度学习-Tensorflow2.2-预训练网络{7}-迁移学习基础针对小数据集-19

使用预训练网络(迁移学习)预训练网络是一个保存好的之前已在大型数据集(大规模图像分类任务)上训练好的卷积神经网络如果这个原始数据集足够大且足够通用,那么预训练网络学到的特征的空间层次结构可以作为有效的提取视觉世界特征的模型。即使新问题和新任务与原始任务完全不同学习到的特征在不同问题之间是可移植的,这也是深度学习与浅层学习方法的一个重要优势。它使得深度学习对于小数据问题非常的有效。Keras内置预训练网络Keras库中包含VGG16、VGG19\ResNet50、Inception v3、Xcepti

2020-11-21 00:45:55 128

原创 深度学习-Tensorflow2.2-自定义训练综合实例与图片增强{6}-猫狗数据集实例-18

000000

2020-11-18 23:52:16 41

原创 深度学习-Tensorflow2.2-Tensorboard可视化{5}-可视化基础-17

Tensorboard可视化简介TensorBoard是一款为了更方便 TensorFlow 程序的理解、调试与优化发布的可视化工具。你可以用 TensorBoard 来展现你的 TensorFlow 图像,绘制图像生成的定量指标图以及附加数据。TensorBoard 通过读取 TensorFlow 的事件文件来运行。TensorFlow 的事件文件包括了你会在 TensorFlow 运行中涉及到的主要数据。Tensorboard随着tensorflow的安装一并被安装好Tensorboard主要

2020-11-15 22:52:12 8

原创 深度学习-Tensorflow2.2-Eager模式与自定义训练{4}-微分运算训练练习-16

Eager模式简介Tensorflow 发布了新的 TF 2.0 Beta 版本我们可以通过以下命令安装:pip install tensorflow==2.0.0-beta1TensorFlow的eager模式是一个命令式编程环境,它使得我们可以立即评估操作产生的结果,而无需构建计 算图。Eager模式极大的方便我们使用TensorFlow、调试模型,增加了网络调试的灵活程度和tensorflow对于初学者友好性。在这里我们可以叫它 tensorflow的交互模式。与Tensorflow 1.x

2020-11-14 21:26:23 20

原创 深度学习-Tensorflow2.2-卷积神经网络{3}-电影评论数据分类/猫狗数据集实例-15

2020-11-13 22:36:51 14

原创 深度学习-Tensorflow2.2-批标准化简介-14

什么是标准化传统机器学习中标准化也叫做归一化,一般是将数据映射到指定的范围,用于去除不同维度数据的量纲以及量纲单位。数据标准化让机器学习模型看到的不同样本彼此之间更加相似,这有助于模型的学习与对新数据的泛化常见的数据标准化形式:标准化和归一化将数据减去其平均值使其中心为 0,然后将数据除以其标准差使其标准差为 1。Batch Normalization, 批标准化, 和普通的数据标准化类似, 是将分散的数据统一的一种做法, 也是优化神经网络的一种方法.什么是批标准化批

2020-11-12 23:56:17 15

原创 深度学习-Tensorflow2.2-卷积神经网络{3}-卫星图像识别卷积综合实例(二分类)-13

jkjk

2020-11-12 00:52:13 98 1

原创 深度学习-Tensorflow2.2-卷积神经网络{3}-卷积神经网络CNN示例-12

import tensorflow as tffrom tensorflow import kerasimport matplotlib.pyplot as plt%matplotlib inlineimport numpy as np# 下载数据集并划分为目标集和测试集(train_image,train_lable),(test_image,test_label) = tf.keras.datasets.fashion_mnist.load_data()train_image...

2020-11-03 00:45:38 70

原创 深度学习-Tensorflow2.2-卷积神经网络{3}-卷积神经网络CNN基础-11

CNN 简介实现对图像的高准确率识别离不开一种叫做卷积神经网络的深度学习技术。卷积神经网络主要应用于计算机视觉相关任务,但它能处理的任务并不局限于图像,其实语音识别也是可以使用卷积神经网络。我们将使用识别Mnist手写数字、cifar10图像数据以及猫和狗图像识别数据来让大家对于卷积神经网络有一个大概的了解。什么是卷积神经网络?当计算机看到一张图像(输入一张图像)时,它看的是一大堆像素值。当我们人类对图像进行分类时,这些数字毫无用处,可它们却是计算机可获得的唯一输入。

2020-11-03 00:40:44 61

原创 深度学习-Tensorflow2.2-tf.data输入模块{2}-tf.data输入实例-10

1111111

2020-11-01 23:39:41 37

原创 深度学习-Tensorflow2.2-tf.data输入模块{2}-tf.data基础用法-09

TF.DATA 模块tf.data模块简介import tensorflow as tf# 使用一个列表建立datasetdataset = tf.data.Dataset.from_tensor_slices([1,2,3,4,5])dataset# 应用datasetfor ele in dataset: print(ele)# 把Tensor输出为numpy类型for ele in dataset: print(ele.numpy())

2020-11-01 22:18:23 266

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-tf.keras函数式API-08

import tensorflow as tffrom tensorflow import kerasimport matplotlib.pyplot as plt%matplotlib inline# 导入fashion数据集fashion_mnist = keras.datasets.fashion_mnist(train_images,train_labels),(test_images,test_labels) = fashion_mnist.load_data()# 对样本进行归

2020-10-31 23:50:30 27

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-优化函数,学习速率,反向传播,网络优化与超参数选择,Dropout 抑制过拟合概述-07

多层感知器:优化使用梯度下降算法学习速率学习速率选取原则反向传播SGDRMSpropAdamlearning_rate=0.01# -*- coding: utf-8 -*-# -*- coding: utf-8 -*-import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告import tensorflow as tfimport pandas as pdimp

2020-10-30 23:37:23 11

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-softmax多分类-06

softmax分类Fashion MNIST数据集

2020-10-30 21:21:48 63

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-逻辑回归与交叉熵概述-05

线性回归预测的是一个连续值,逻辑回归给出的“是”和“否”的答案一个二元分类的问题。sigmoid函数是一个概率分布函数,给定某个输入,它将输出为一个概率值。逻辑回归损失函数交叉熵损失函数# -*- coding: utf-8 -*-import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告import tensorflow as tfimport pandas as pdimport numpy as np

2020-10-30 17:18:22 30

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-多层感知器(神经网络)与激活函数概述-04

多层感知器计算输入特征得加权和,然后使用一个函数激活(或传递函数)计算输出。单个神经元多个神经元单层神经元缺陷多层感知器多层感知器激活函数relu:曲线如下图,假如过来的函数是x当x小于0的时候直接屏蔽,大于0的时候就原样输出sigmoid激活:假如输出的x值就会带入下面公式进行计算tanh激活:-1到1之间leak relu激活# -*- coding: utf-8 -*-import osos.environ['TF_CPP_MIN_LOG_LEVEL']

2020-10-30 01:00:27 26

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-梯度下降算法概述-03

损失函数Z,样本个数n

2020-10-29 23:55:45 120

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-线性回归tf.keras概述-02

线性回归原理线性方程 y=kx+bimport osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告import tensorflow as tfimport pandas as pdimport matplotlib.pyplot as pltdata = pd.read_csv('A.csv')print(data)plt.scatter(data.Education,data.Income)plt.show

2020-10-28 22:52:46 29

原创 深度学习-Tensorflow2.2-深度学习基础和tf.keras{1}-Tensorflow2.2-cpu/gpu环境安装-01

pip install tensorflow==2.2.0 -i https://pypi.tuna.tsinghua.edu.cn/simplepip install numpy pandas matplotlib sklearn -i https://pypi.tuna.tsinghua.edu.cn/simple

2020-10-28 21:40:29 25

原创 深度学习-线性回归基础-02

线性回归:w12+w22+w33+w44+…w“n”*n算法:线性回归策略:均方误差优化:梯度下降api(学习率)import osos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # 修改警告级别,不显示警告import tensorflow as tfdef myregression(): """ 自实现一个线性回归预测 :return: """ # 1,准备数据,x特征值[100,1] y目标值[10

2020-10-22 23:28:12 11

原创 深度学习-Tensorflow基本介绍01

安装Tensorflowpip install --upgrade --ignore-installed tensorflow -i https://pypi.tuna.tsinghua.edu.cn/simple

2020-10-19 22:54:53 33

原创 机器学习-k均值聚类算法-k_means原理14

非监督学习

2020-10-13 22:24:44 11

原创 机器学习-分类算法-逻辑回归13

逻辑回归是解决二分类问题的利器数据来源:https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/逻辑回归在算法实现的时候有个判定是某个类别的概率,我们一般是根据样本数量的大小去判定。...

2020-10-13 20:57:21 22

原创 机器学习-分类算法-模型的保存和加载12

保存模型from sklearn.datasets import load_bostonfrom sklearn.linear_model import LinearRegression,SGDRegressor,Ridgefrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerfrom sklearn.metrics import mean_squa..

2020-10-12 23:03:17 35

原创 机器学习-分类算法-线性回归、梯度下降,过拟合欠拟合,岭回归11

梯度下降重点正规方程求解预测结果from sklearn.datasets import load_bostonfrom sklearn.linear_model import LinearRegression,SGDRegressorfrom sklearn.model_selection import train_test_splitfrom sklearn.preprocessing import StandardScalerdef mylinear():...

2020-10-12 00:56:19 11

原创 机器学习-分类算法-决策树,随机森林10

决策树:决策树的思想来源非常朴素,程序设计中的条件分支机构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法。信息和消除不确定性是相联系的信息增益:当得知一个特征后,减少的信息熵的大小决策树的分类依据之一:信息增益泰坦里克号数据来源:http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt...

2020-10-08 23:14:28 20

原创 机器学习-分类算法-模型选择与调优09

模型选择与调优交叉验证:为了让被评估的模型更加准确可信网格搜索from sklearn.neighbors import KNeighborsClassifierfrom sklearn.model_selection import train_test_split,GridSearchCVfrom sklearn.preprocessing import StandardScalerimport pandas as pddef knncls(): # k-近邻预测用户签

2020-10-07 22:09:53 18

原创 机器学习-分类算法-精确率和召回率08

from sklearn.datasets import fetch_20newsgroupsfrom sklearn.model_selection import train_test_splitfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.metrics import classification_re...

2020-10-07 20:59:15 29

原创 机器学习-分类算法-朴素贝叶斯算法07

概率:概率定义为一件事情发生的可能性如:扔硬币某一面朝上有50%概率“朴素”贝叶斯:所有特征之间条件独立朴素贝叶斯-文档分类

2020-10-07 20:16:47 14

原创 机器学习-分类算法-K-近邻算法06

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。我们对应上面的流程来说1.给定了红色和蓝色的训练样本,绿色为测试样本2.计算绿色点到其他点的距离3.选取离绿点最近的k个点4.选取k个点中,同种颜色最多的类。例如:k=1时,k个点全是蓝色,那预测结果就是Class 1;k=3时,k个点中两个红

2020-10-01 02:07:30 14

原创 机器学习-转换器与估计器05

转换器# -*- coding: utf-8 -*-from sklearn.preprocessing import StandardScalers = StandardScaler()s1 = s.fit_transform([[1,2,3],[4,5,6]])print(s1)print("-"*50)ss = StandardScaler()ss1 = ss.fit([[1,2,3],[4,5,6]])# 计算当前数据的标准差或平均值print(ss1)print("-".

2020-10-01 01:33:47 19

原创 机器学习-数据集类型04

大萨达所多

2020-10-01 00:56:07 35

原创 机器学习-特征处理/归一化/标准化/降维03

归一化from sklearn.preprocessing import MinMaxScalerdef mm(): # 归一化处理 mm = MinMaxScaler() data = mm.fit_transform([[90,2,10,40],[60,4,15,45],[75,3,13,46]]) print(data)if __name__=='__main__': mm()标准化from sklearn.preprocessing i

2020-09-30 00:41:02 77

原创 机器学习-特征抽取02

特征抽取是对文本等数据进行值化,特征值化是为了让计算机能够更好的去理解数据。sklearn特征抽取apisklearn.feature_extraction字典特征抽取(对字典数据进行特征值化)from sklearn.feature_extraction import DictVectorizer# 字典特征抽取from sklearn.feature_extraction import DictVectorizerdict = DictVectorizer(sparse=Fal

2020-09-27 23:42:54 33

原创 机器学习-概述01

机器学习的概述什么是机器学习机器学习是从数据中自动分析获得规律(模型),并利用规律对未知数据进行预测。为什么需要机器学习解放生产力: 智能客户 — 不知疲倦进行24小时作业解决专业问题: ET医疗 ---- 帮助看病提供社会便利 : 如杭州的城市大脑机器学习在各领域的价值领域:医疗,航空,教育,物流,电商…目的: 让机器学习程序替换手动的步骤,减少企业的成本也提高企业的效率例子: 汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册...

2020-09-26 01:46:29 42

原创 数据分析学习03-pandas

简介Pandas 是 Python 的外部模块,它非常像 Excel,提供了分析数据的功能。它提供了两个数据类型 Series 和 DataFrame。什么是 Series?Series 是 Pandas 提供的一种数据类型,你可以把它想象成 Excel 的一行或一列。(一维,带标签数组)Series对象本质上由两个数组组成(index索引,value值)什么是 DataFrame?DataFrame 是 Pandas 提供的一种数据类型,你可以把它想象成 Excel 的表格。(二维

2020-09-18 00:20:30 37

原创 数据分析学习02-numpy

简介NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种API,有包括数学、逻辑、形状操作、排序、选择、输入输出、离散傅立叶变换、基本线性代数,基本统计运算和随机模拟等等。使用我们仅需要简单的通过import numpy as np就可以使用numpy了。为什么要用numpy?如果我们希望两个列表对应项相加,则我们需要这样做,使用Python列表这样的代码是冗余的,而使用numpy则大大减少了代码的冗余。

2020-09-11 03:01:02 43

Selenium (WEB自动化工具/爬虫)|selenium学习完结散花.docx

Selenium (WEB自动化工具/爬虫):本文包含WEB自动化,以及爬虫使用方法 本文详细介绍了Selenium Python版本的自动化测试方法和实践,通过本文学习你将掌握如下内容:Selenium 测试环境搭建单元测试、生成测试报告、定位元素、WebDriver属性和方法、WebElement属性和方法、操作form表单、操作下拉列表、处理等待、远程测试、Selenium Grid、鼠标事件、键盘事件、调用js、屏幕截图、Selenium IDE、文件上传、设置代理、无界面运行、参数化测试、数据驱动的测试DDT等。

2020-08-15

selenium学习完结散花.docx

一、 根据tag名、id、class选择元素 二、根据css选择元素 三、frame元素切换/窗口切换, frame 或者iframe元素内部会包含一个被嵌入的另一份html文档 四、selenium 选取选择框 五、更多操作技巧 六、Xpath 选择器

2020-06-03

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除