1.题目描述
2.算法思路
我认为做动态规划题的关键是找到一个合适的dp数组,确定它dp[i][j]的含义,用它和题目的最优子结构性质结合求解。具体思路如下:
(笔记些许潦草hhh…)
1.dp[i][j]表示第i个作业在第j(0-A,1-B)台机器上处理,两台机器处理完i个作业的最短总时间
2.根据最优子结构性质
貌似
dp[i][0]=min(dp[i-1][0],dp[i-1][1])+a[i]
dp[i][1]=min(dp[i-1][0],dp[i-1][1])+b[i]
陷阱在这里,前面选择的不同会直接影响A、B机器的可用时刻,因此,直接用上面的式子是不对的
我们还需要两个变量A、B记录处理完前i-1个作业后机器A和机器B的可用时刻
当dp[i-1][0]<dp[i-1][1]时,说明第i-1个作业在A机器完成,更新A,dp[i][0]=A+a[i],dp[i][1]=B+b[i]
否则说明第i-1个作业在B机器完成,更新B,dp[i][0]=A+a[i],dp[i][1]=B+b[i]
3.程序代码
为了简介显示主要算法,计时函数没有写在下面的代码里
#include<bits/stdc++.h>
using namespace std;
#define N 10010
int n;
int a[N],b[N];
int dp[N][2]; //dp[i][j]:第i个作业在第j台机器上处理,两台机器处理完i个作业的最短总时间
int main(){
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
//memset(dp,0x3f,sizeof(dp));
int A=0,B=0; //用于记录A、B两台机器的可用时刻
dp[1][0]=a[1];
dp[1][1]=b[1];
for(int i=2;i<=n;i++){
//第i-1个作业在处理机A完成的总时间最短
if(dp[i-1][0]<=dp[i-1][1]){
A=dp[i-1][0];
dp[i][0]=A+a[i];
dp[i][1]=B+b[i];
}
//第i-1个作业在处理机B完成的总时间最短
else{
B=dp[i-1][1];
dp[i][0]=A+a[i];
dp[i][1]=B+b[i];
}
}
if(dp[n][0]<=dp[n][1]) A=dp[n][0];
else B=dp[n][1];
printf("%d",max(A,B));
fclose(stdin);
fclose(stdout);
return 0;
}
4.生成测试数据
#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
int main(){
int n;
scanf("%d",&n);
freopen("input.txt","w",stdout);
srand(time(0));
for(int i=0;i<n;i++) {
if((rand()%10)==0){
i--;
}
else printf("%d ",rand()%10);
}
printf("\n");
for(int i=0;i<n;i++) {
if((rand()%10)==0){
i--;
}
else printf("%d ",rand()%10);
}
fclose(stdout);
}
5.不同规模数据实验的时间对比
计时方式:
#include<windows.h>
...
LARGE_INTEGER nFreq,nBegin,nEnd;
QueryPerformanceFrequency(&nFreq);
QueryPerformanceCounter(&nBegin);
...//需要计算运行时间的关键代码
QueryPerformanceCounter(&nEnd);
double t=(double)(nEnd.QuadPart-nBegin.QuadPart)/(double)nFreq.QuadPart; //得到运行时间t
printf("运行时间:%lf",t);
数据规模n | 10 | 1000 | 100000 |
---|---|---|---|
运行时间/s | 0.000708 | 0.002277 | 0.094936 |
6.时间复杂度分析
都是单层循环
故为O(n)