【动态规划】独立任务最优调度问题

1.题目描述

在这里插入图片描述

2.算法思路

我认为做动态规划题的关键是找到一个合适的dp数组,确定它dp[i][j]的含义,用它和题目的最优子结构性质结合求解。具体思路如下:

(笔记些许潦草hhh…)

在这里插入图片描述

1.dp[i][j]表示第i个作业在第j(0-A,1-B)台机器上处理,两台机器处理完i个作业的最短总时间

2.根据最优子结构性质

貌似

dp[i][0]=min(dp[i-1][0],dp[i-1][1])+a[i]

dp[i][1]=min(dp[i-1][0],dp[i-1][1])+b[i]

陷阱在这里,前面选择的不同会直接影响A、B机器的可用时刻,因此,直接用上面的式子是不对的

我们还需要两个变量A、B记录处理完前i-1个作业后机器A和机器B的可用时刻

当dp[i-1][0]<dp[i-1][1]时,说明第i-1个作业在A机器完成,更新A,dp[i][0]=A+a[i],dp[i][1]=B+b[i]

否则说明第i-1个作业在B机器完成,更新B,dp[i][0]=A+a[i],dp[i][1]=B+b[i]

3.程序代码

为了简介显示主要算法,计时函数没有写在下面的代码里

#include<bits/stdc++.h>
using namespace std;
#define N 10010 
int n;
int a[N],b[N];
int dp[N][2]; //dp[i][j]:第i个作业在第j台机器上处理,两台机器处理完i个作业的最短总时间 
int main(){
	freopen("input.txt","r",stdin);
	freopen("output.txt","w",stdout);	
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++) scanf("%d",&b[i]);
	//memset(dp,0x3f,sizeof(dp));
	int A=0,B=0; //用于记录A、B两台机器的可用时刻
	dp[1][0]=a[1];
	dp[1][1]=b[1]; 
	for(int i=2;i<=n;i++){
		//第i-1个作业在处理机A完成的总时间最短 
		if(dp[i-1][0]<=dp[i-1][1]){
			A=dp[i-1][0];
			dp[i][0]=A+a[i];
			dp[i][1]=B+b[i];
		}
		//第i-1个作业在处理机B完成的总时间最短 
		else{
			B=dp[i-1][1];
			dp[i][0]=A+a[i];
			dp[i][1]=B+b[i];
		} 
	}
	if(dp[n][0]<=dp[n][1]) A=dp[n][0];
	else B=dp[n][1];
	printf("%d",max(A,B));
	fclose(stdin);
	fclose(stdout);
	return 0;
} 

在这里插入图片描述

4.生成测试数据

#include<iostream>
#include<cstdlib>
#include<ctime>
using namespace std;
int main(){
	int n;
	scanf("%d",&n);
	freopen("input.txt","w",stdout);
	srand(time(0));
	for(int i=0;i<n;i++) {
		if((rand()%10)==0){
			i--;
		}
		else printf("%d ",rand()%10);
	}
	printf("\n");
	for(int i=0;i<n;i++) {
		if((rand()%10)==0){
			i--;
		}
		else printf("%d ",rand()%10);
	}
	fclose(stdout);
}

5.不同规模数据实验的时间对比

计时方式:

#include<windows.h>	
	...
LARGE_INTEGER nFreq,nBegin,nEnd;
QueryPerformanceFrequency(&nFreq);	
QueryPerformanceCounter(&nBegin);
...//需要计算运行时间的关键代码
QueryPerformanceCounter(&nEnd);
double t=(double)(nEnd.QuadPart-nBegin.QuadPart)/(double)nFreq.QuadPart; //得到运行时间t
printf("运行时间:%lf",t);
数据规模n101000100000
运行时间/s0.0007080.0022770.094936

6.时间复杂度分析

都是单层循环

故为O(n)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值