大语言模型的迅猛发展引起了世界各国学术界高度重视,掌握大模型发展俨然是人工智能未来的趋势,大型语言模型(LLM)的发展正朝着更大规模、更专业和更安全的方向发展,同时也在探索如何更好地集成到各种业务流程和应用中。
《自然语言处理:大模型理论实践》一书以自然语言处理中语言模型为主线,涵盖了从基础理论到高级应用的全方位内容,逐步引导读者从基础的自然语言处理技术走向大模型的深度学习与实际应用。
自然语言处理一直是人工智能最热门的应用研究领域,对科学技术、文化教育、经济社会的发展各个方面都具有极其重大的意义。近年以来,以ChatGPT 为代表的生成式预训练对话人工智能技术(即大语言模型,简称大模型)取得了令人瞩目的进展,给基于统计方法的自然语言处理技术带来了前所未有的进步。
有需要《自然语言处理:大模型理论实践》这本书籍PDF文档,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】
书籍章节目录
第一部分 语言模型基础
- 词向量
- 统计语言模型
- 神经语言模型
- 预训练语言模型
第二部分 大模型理论
- 大语言模型架构
- 多模态大模型架构
- 大模型预训练
- 大模型微调
- 提示工程
- 涌现
- 大模型评估
第三部分 大模型实践
- 大模型本地开发
- 基于大模型的应用开发
- 预备知识
- 相关学术会议与学术组织
有需要《自然语言处理:大模型理论实践》这本书籍PDF文档,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费】