大模型 | AI Agent的一些常见分类(功能、学习方式、应用领域、自主程度、基于智能体的行为和决策方式进行分类)

AI Agent 可以根据不同的标准进行分类,以下是一些常见的分类方式。

一、根据功能分类

1. 任务执行型 Agent

特点

这类 Agent 专注于执行特定的任务,具有明确的目标和行动步骤。它们通常根据预定义的规则和算法进行操作,以实现特定的结果。

举例

自动化脚本、机器人流程自动化(RPA)工具等。例如,一个用于数据输入的自动化脚本,它可以按照固定的格式从一个数据源读取数据,并将其输入到另一个系统中。

应用场景

适用于重复性高、规则明确的任务,如数据处理、文件管理、订单处理等。可以提高工作效率,减少人工错误。

2. 决策制定型 Agent

特点

能够根据输入的信息和环境条件做出决策。它们通常使用机器学习算法和模型,对不同的情况进行分析和评估,以选择最佳的行动方案。

举例

智能投资顾问、自动驾驶汽车等。例如,智能投资顾问可以根据客户的风险偏好、财务状况和市场趋势,为客户提供个性化的投资建议。

应用场景

在需要复杂决策的领域,如金融、医疗、交通等。可以帮助人们做出更明智的决策,提高决策的准确性和效率。

3. 知识管理型 Agent

特点

负责管理和组织知识,以便在需要时提供给用户。它们可以从各种来源收集、整理和存储知识,并使用自然语言处理和搜索技术,快速准确地回答用户的问题。

举例

智能客服、知识图谱系统等。例如,智能客服可以根据用户的问题,从知识库中检索相关的答案,并以自然语言的形式回复用户。

应用场景

适用于需要大量知识支持的领域,如企业管理、教育、科研等。可以提高知识的利用效率,促进知识的共享和创新。

4. 交互型 Agent

特点

扮演某些角色,能够与用户进行自然语言交互,理解用户的需求和意图,并提供相应的服务和支持。它们通常使用自然语言处理和对话管理技术,实现与用户的流畅对话。

举例

智能语音助手、聊天机器人等。例如,智能语音助手可以通过语音识别和语音合成技术,与用户进行对话,执行用户的指令,如查询天气、播放音乐等。

应用场景

在日常生活和工作中,为用户提供便捷的服务和支持。可以提高用户体验,增强用户与技术的互动性。

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

二、根据学习方式分类

1. 监督学习型 Agent

特点

通过学习大量标注好的数据来进行预测和决策。它们需要有明确的输入和输出标签,以便学习输入和输出之间的映射关系。

举例

图像分类器、语音识别系统等。例如,图像分类器可以通过学习大量标注好的图像数据,识别不同的物体和场景。

应用场景

适用于有大量标注数据可用的任务,如自然语言处理、计算机视觉等。可以快速准确地学习和应用知识。

2. 无监督学习型 Agent

特点

在没有标注数据的情况下,通过发现数据中的模式和结构来进行学习。它们可以自动地从数据中提取特征和规律,以便更好地理解数据。

举例

聚类算法、主成分分析等。例如,聚类算法可以将数据分成不同的组,以便更好地理解数据的分布和结构。

应用场景

适用于数据没有明确标签或难以标注的任务,如数据分析、异常检测等。可以发现数据中的潜在模式和关系。

3. 强化学习型 Agent

特点

通过与环境进行交互,获得奖励信号,并根据奖励信号来调整自己的行为。它们可以在不断的尝试和错误中学习,以最大化长期的奖励。

举例

游戏 AI、机器人控制等。例如,游戏 AI 可以通过与游戏环境进行交互,学习如何制定最佳的策略,以获得最高的得分。

应用场景

适用于需要在动态环境中进行决策和行动的任务,如自动驾驶、机器人控制、智能游戏等。可以通过不断的学习和优化,提高自己的性能和适应性。

三、根据应用领域分类

1. 金融领域 Agent

特点

专注于金融领域的任务,如投资决策、风险管理、市场预测等。它们通常使用金融数据和模型,结合机器学习和数据分析技术,为金融机构和投资者提供决策支持。

举例

智能投资顾问、风险评估系统等。例如,智能投资顾问可以根据客户的风险偏好和财务状况,为客户提供个性化的投资组合建议。

应用场景

在金融行业中,帮助金融机构和投资者做出更明智的决策,提高投资回报率和风险管理能力。

2. 医疗领域 Agent

特点

用于医疗领域的任务,如疾病诊断、治疗建议、健康管理等。它们可以利用医疗数据和医学知识,结合人工智能技术,为医生和患者提供辅助诊断和治疗建议。

举例

医疗影像诊断系统、智能健康管理平台等。例如,医疗影像诊断系统可以通过分析医学影像,辅助医生进行疾病诊断。

应用场景

在医疗行业中,提高医疗诊断的准确性和效率,改善患者的治疗效果和健康管理水平。

3. 交通领域 Agent

特点

专注于交通领域的任务,如交通流量预测、路径规划、智能驾驶等。它们可以利用交通数据和模型,结合人工智能技术,为交通管理部门和出行者提供决策支持和服务。

举例

智能交通信号控制系统、自动驾驶汽车等。例如,智能交通信号控制系统可以根据交通流量实时调整信号灯时间,提高交通效率。

应用场景

在交通领域中,优化交通流量,提高交通安全性和出行效率。

4. 教育领域 Agent

特点

应用于教育领域的任务,如个性化学习、智能辅导、教育资源推荐等。它们可以根据学生的学习情况和需求,提供个性化的学习方案和辅导服务。 举例

智能学习平台、在线教育助手等。例如,智能学习平台可以根据学生的学习进度和能力,为学生推荐适合的学习资源和练习题。

应用场景

在教育领域中,满足学生的个性化学习需求,提高学习效果和教育质量。

还有其他很多领域可以应用AI 代理技术,这里就不一一举例了。

四、根据自主程度分类

1. 自主型 Agent

特点

具有较高的自主决策和行动能力,可以在没有人类干预的情况下完成任务。它们通常使用机器学习和人工智能技术,能够根据环境变化和任务需求,自动调整自己的行为。

举例

自动驾驶汽车、自主机器人等。例如,自动驾驶汽车可以在没有人类驾驶员的情况下,自主地感知环境、做出决策和控制车辆行驶。

应用场景

在需要高度自主决策和行动的领域,如太空探索、危险环境作业等。可以减少人类的风险和负担,提高任务的完成效率。

2. 半自主型 Agent

特点

在一定程度上具有自主决策和行动能力,但仍需要人类的监督和指导。它们可以根据预设的规则和策略进行操作,但在遇到复杂情况或不确定因素时,需要人类的干预和决策。

举例

智能助手、工业机器人等。例如,智能助手可以根据用户的指令完成一些简单的任务,但在遇到复杂问题时,需要用户的进一步指导。

应用场景

在需要人类与技术协同工作的领域,如制造业、服务业等。可以提高工作效率和质量,同时保证任务的准确性和安全性。

3. 非自主型 Agent(狭义的AI Agent我认为都不应该包括这个)

特点

完全由人类控制和操作,没有自主决策和行动能力。它们通常是人类的工具或辅助设备,根据人类的指令进行操作。

举例

传统的软件工具、机械设备等。例如,文字处理软件、打印机等,它们需要人类的操作和指令才能完成任务。

应用场景

在一些简单的任务和领域,如办公自动化、日常生产生活等。可以提高工作效率和便利性。

五、基于智能体的行为和决策方式进行分类

1.简单反射代理

行为特点

根据当前的感知信息,依据预定义的规则做出决策,不考虑过去的感知历史和未来的后果。只对当前情况作出反应,遵循条件 - 动作规则,即当特定条件满足时,执行相应的动作。

适用场景

适用于具有稳定规则和直接行动的环境,比如一些简单的自动化任务。

2.基于模型的反射代理(Model-Based Reflex Agents)

行为特点

基于当前的感知和内部状态(基于感知历史的对当前状态的表示)来执行动作,拥有关于世界如何运行的模型知识。通过该模型和对自身行为如何影响世界的理解,更新内部状态以做出决策。

适用场景

可在部分可观察的环境中工作。

3.基于目标的代理(Goal-Based Agents)

行为特点

利用环境信息来实现特定目标,使用搜索算法在给定环境中找到实现目标的最有效路径,遵循预定义的规则来确定在不同情况下应采取的行动。

适用场景

适用于目标明确、环境相对结构化的任务。

4.基于效用的代理(Utility-Based Agents)

行为特点

基于效用函数或价值最大化来做出决策,对环境进行建模,根据概率分布和效用函数评估每个可能结果的期望效用,选择具有最高期望效用的行动。

适用场景

常用于需要在多个选项中进行比较和选择的场景。

5.学习代理(Learning Agents)

行为特点

可以从过去的经验中学习,具有学习能力。包含学习要素、评论家、绩效要素和问题生成器四个概念组件。

适用场景

适用于需要不断适应新情况、改进性能的场景。

6.混合代理(Hybrid Agents)

行为特点

结合了多种上述类型代理的特点和优势,以应对更复杂的任务和环境。

适用场景

复杂的决策系统等。


六、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值