注意力机制是深度学习领域中广泛应用的技术,特别是在自然语言处理和计算机视觉任务中。它使模型能够有选择地关注输入数据的特定部分,以此提升模型的性能。
想象一下,当你读到 “The cat sat on the mat” 这句话时,人类可以立即理解单词之间的关系,可以知道 “sat” 与 “cat” 的关系比与“mat”的关系更密切。
注意力机制使机器能够捕捉类似的关系,帮助它们专注于输入数据的特定部分。
Transformer 中的注意力机制
在 Transformer 模型中,注意力机制是其核心组件,它使得模型可以在处理输入序列的过程中关注到最重要的信息,从而大幅提高了模型在长序列中的表现。
自注意力机制
在自注意力机制中,每个输入向量可以“关注”同一序列中的其他向量,这使得模型能够灵活地关注整个序列的不同部分。
自注意力机制的计算过程包括以下几个步骤。
-
查询(Query)、键(Key)和值(Value)向量
对输入序列 X 进行线性变换,生成查询(Query)、键(Key)、和值(Value)三组向量
其中 、、 是可学习的权重矩阵
-
计算注意力得分
使用点积来衡量查询和键之间的相似性,以得到注意力得分
其中 是缩放因子,用于避免得分值过大引起梯度不稳定。
-
归一化
将注意力得分输入到 Softmax 函数中,得到每个位置的注意力权重,使得这些权重总和为 1。
注意力权重可以理解为“当前位置对其他位置的关注程度”
-
加权求和
最后,用归一化的注意力权重对值矩阵 V 进行加权求和,得到最终的自注意力输出。
下面,我们一起来看一下如何使用代码来实现上述过程。
import numpy as np
word_embeddings = {
'she': np.array([0.2, 0.9, 0.1, 0.5]),
'likes': np.array([0.8, 0.3, 0.7, 0.2]),
'coffee': np.array([0.4, 0.6, 0.3, 0.9])
}
X = np.vstack([word_embeddings['she'],
word_embeddings['likes'],
word_embeddings['coffee']])
W_q = np.array([[0.9, 0.1, 0.1, 0.1],
[0.1, 0.9, 0.1, 0.1],
[0.1, 0.1, 0.9, 0.1],
[0.1, 0.1, 0.1, 0.9]])
W_k = np.array([[0.9, 0.1, 0.1, 0.1],
[0.1, 0.9, 0.1, 0.1],
[0.1, 0.1, 0.9, 0.1],
[0.1, 0.1, 0.1, 0.9]])
W_v = np.array([[0.8, 0.2, 0.1, 0.1],
[0.2, 0.8, 0.2, 0.1],
[0.1, 0.2, 0.8, 0.1],
[0.1, 0.1, 0.1, 0.9]])
Q = np.dot(X, W_q)
K = np.dot(X, W_k)
V = np.dot(X, W_v)
scores = np.dot(Q, K.T)
d_k = K.shape[1]
scaled_scores = scores / np.sqrt(d_k)
exp_scores = np.exp(scaled_scores)
attention_weights = exp_scores / exp_scores.sum(axis=1, keepdims=True)
output = np.dot(attention_weights, V)
print(output)
多头注意力机制(Multi-Head Attention)
多头注意力机制进一步扩展了自注意力的表达能力。
通过设置多个注意力头(head),每个头从不同的子空间中获取信息,最后将各头的结果拼接起来并进行线性变换。
这样模型可以更好地捕捉多维度的依赖关系,使其在复杂任务中表现更为优异。
多头注意力的计算流程
-
多头计算
输入经过多个注意力头的处理,每个头使用一组独立的 参数,生成多组不同的查询、键和值。
-
并行执行自注意力
各个头并行执行自注意力操作,每个头得到的输出向量表示了该头对输入的不同“关注”。
-
拼接输出并线性变换
所有头的输出被拼接在一起,通过线性变换映射到输出空间。
其中每个 是各个头的自注意力输出, 是线性变换矩阵。
多头注意力机制增加了模型的灵活性,能让模型从不同角度学习到序列中词汇间的关系。
class MultiHeadAttention(nn.Module):
def __init__(self, d_model, num_heads):
super(MultiHeadAttention, self).__init__()
# Ensure that the model dimension (d_model) is divisible by the number of heads
assert d_model % num_heads == 0
# Initialize dimensions
self.d_model = d_model # Model's dimension
self.num_heads = num_heads # Number of attention heads
self.d_k = d_model // num_heads # Dimension of each head's key, query, and value
# Linear layers for transforming inputs
self.W_q = nn.Linear(d_model, d_model) # Query transformation
self.W_k = nn.Linear(d_model, d_model) # Key transformation
self.W_v = nn.Linear(d_model, d_model) # Value transformation
self.W_o = nn.Linear(d_model, d_model) # Output transformation
# 缩放点积注意力机制
def scaled_dot_product_attention(self, Q, K, V, mask=None):
# Calculate attention scores
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
# Apply mask if provided (useful for preventing attention to certain parts like padding)
if mask is not None:
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
# Softmax is applied to obtain attention probabilities
attn_probs = torch.softmax(attn_scores, dim=-1)
# Multiply by values to obtain the final output
output = torch.matmul(attn_probs, V)
return output
def split_heads(self, x):
# Reshape the input to have num_heads for multi-head attention
batch_size, seq_length, d_model = x.size()
return x.view(batch_size, seq_length, self.num_heads, self.d_k).transpose(1, 2)
def combine_heads(self, x):
# Combine the multiple heads back to original shape
batch_size, _, seq_length, d_k = x.size()
return x.transpose(1, 2).contiguous().view(batch_size, seq_length, self.d_model)
def forward(self, Q, K, V, mask=None):
# Apply linear transformations and split heads
Q = self.split_heads(self.W_q(Q))
K = self.split_heads(self.W_k(K))
V = self.split_heads(self.W_v(V))
# Perform scaled dot-product attention
attn_output = self.scaled_dot_product_attention(Q, K, V, mask)
# Combine heads and apply output transformation
output = self.W_o(self.combine_heads(attn_output))
return output
最后分享
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】