一、LangChain介绍
先看官方的定义
LangChain是一个基于语言模型开发应用程序的框架。它可以实现以下应用程序:
- 数据感知:将语言模型连接到其他数据源
- 自主性:允许语言模型与其环境进行交互
LangChain的主要价值在于:
- 组件化:为使用语言模型提供抽象层,以及每个抽象层的一组实现。组件是模块化且易于使用的,无论您是否使用LangChain框架的其余部分。
- 现成的链:结构化的组件集合,用于完成特定的高级任务
现成的链使得入门变得容易。对于更复杂的应用程序和微妙的用例,组件化使得定制现有链或构建新链变得更容易。
所以,LangChain是一个强大的框架,旨在帮助开发人员使用语言模型构建端到端的应用程序。LangChain通过将大型语言模型与其他知识库、计算逻辑相结合,实现了功能更加强大的人工智能应用。
二、LangChain组成部分
2.1 LangChain库
Python 和 JavaScript 库。包含接口和集成多种组件的运行时基础,以及现成的链和代理的实现。LangChain 库本身由几个不同的包组成。
- langchain-core:基础抽象和 LangChain 表达语言。
- langchain-community:第三方集成,主要包括 langchain 集成的第三方组件。
- langchain:主要包括链 (chain)、代理(agent) 和检索策略。
2.2 LangChain任务处理流程
langChain 提供一套提示词模板 (prompt template) 管理工具,负责处理提示词,然后传递给大模型处理,最后处理大模型返回的结果,
LangChain 对大模型的封装主要包括 LLM 和 Chat Model 两种类型。
- LLM - 问答模型,模型接收一个文本输入,然后返回一个文本结果。
- Chat Model - 对话模型,接收一组对话消息,然后返回对话消息,类似聊天消息一样。
三、LangChain快速入门
3.1 安装LangChain
要安装LangChain,可以使用Pip和Conda进行安装。以下是安装LangChain的步骤:
pip install langchain
3.2 初始化模型
在使用LangChain之前,需要导入LangChain x OpenAI集成包,并设置API密钥作为环境变量或直接传递给OpenAI LLM类。
首先,获取阿里云的API密钥,可以通过创建账户并申请API来获取。然后,可以将API密钥设置为环境变量,方法如下:
import os
os.environ["DASHSCOPE_API_KEY"] = "替换API模型"
接下来,初始化模型:
from langchain_openaiimportChatOpenAI
llm = ChatOpenAI()
以上是关于LLM链的介绍,希望能帮助您更好地理解如何安装LangChain并构建不同类型的链。
fromlangchain_openaiimportChatOpenAI
fromopenaiimportOpenAI
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
llm = ChatOpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
model="qwen-plus"
)
3.3 使用LLM
使用LLM来回答问题非常简单。可以直接调用LLM的invoke
方法,并传入问题作为参数。此外,还可以通过提示模板(prompt template)生成提示词,用于向模型(LLM)发送指令。
下面演示了如何构建一个简单的LLM链(chains):
from langchain_core.prompts import ChatPromptTemplate
# 创建一个提示模板(prompt template)
prompt = ChatPromptTemplate.from_messages([
("system", "你是AI智能助手"),
("user", "{input}")
])
# 编排了工作流,返回llm执行结果。
chain = prompt|llm
开始chain定义的步骤开始逐步执行。
chain.invoke({"input": "帮我写一篇关于AI的技术文章,100个字"})
3.4 输出转换
LLM的输出通常是一条消息,为了更方便处理结果,可以将消息转换为字符串。下面展示如何将LLM的输出消息转换为字符串:
fromlangchain_core.output_parsersimportStrOutputParser
# 创建一个字符串输出解析器
output_parser = StrOutputParser()
# 将输出解析器添加到LLM链中
chain = prompt|llm|output_parser
# 调用LLM链并提出问题
chain.invoke({"input": "帮我写一篇langchain的技术文章,100个字"})
四、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】